cho hcn ABCD có BC =2CD từ C kẻ Cx tạo với CD 1 góc bằng 15 độ cắt CD tại E
CM tg BCE cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, chứng minh 5 điểm....
tứ giác APFD nội tiếp (vì gFAP=PDF=45 độ) suy ra gAPF=90d (vi goc D=1v) hay FP vuông góc với AE
suy tiếp được tứ giác FPEC nội tiếp (có 2 góc đối đều =1v) (1)
ta dễ dàng chứng minh được tam giác AFP vuông cân để suy ra AFP=45d
xét tg AQP và PCQ có PA=PC, QC=QA (vì BD là trục đx của HV); PQ chung suy ra 2 tg này bằng nhau suy tiếp được PCQ=PAQ=45đ
mà góc AFP cũng bằng 45d suy ra tứ giác QFCP nt(2)
từ 1 và 2 suy ra đpcm
b, ta có Diện tích tam giác AFE=dt(APQ)+dt(QFEB)
dt(QFEB)=dt(BCD)-dt(CQD)-dt(CPD)
gọi O là tâm của HV ABCD
có dt(QFEB)=1/2OC.PD-1/2PB.CO-1/2CO.DF=1/2....
suy ra dpcm
c, tự vẽ
Để giải bài toán này, chúng ta có thể sử dụng định lí Euclid và các quy tắc về góc và đường thẳng. Hãy xem xét từng câu hỏi một.
a) Để tính AC, ta có thể sử dụng định lí Pythagoras trong tam giác ABC. Với AB = 4cm và BC = 3cm, ta có AC = √(AB^2 + BC^2). Tương tự, để tính AH và BH, ta có AH = AB và BH = BC.
b) Để chứng minh rằng BH.BE = CH.AC, ta có thể sử dụng các quy tắc về tỉ lệ đồng dạng của tam giác. Bằng cách chứng minh rằng tam giác AHB và tam giác CHB đồng dạng, ta có thể suy ra công thức trên.
c) Để chứng minh góc ADH = góc ACK, ta có thể sử dụng các quy tắc về góc đồng quy và góc nội tiếp. Bằng cách chứng minh rằng góc ADH và góc ACK đồng quy với góc nội tiếp tại cùng một cung, ta có thể suy ra bằng chứng cần thiết
Đáp án:
Giải thích các bước giải:
Xét ΔMNF,ΔMPEΔMNF,ΔMPE có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
Mˆ:ChungM^:Chung
ME=MF(gt)ME=MF(gt)
=> ΔMNF=ΔMPE(c.g.c)ΔMNF=ΔMPE(c.g.c)
b) Ta có : {MN=MP(ΔMNP cân tại M))ME=MF(gt){MN=MP(ΔMNP cân tại M))ME=MF(gt)
Lại có : {E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP{E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP
Nên : MN−ME=MP−MFMN−ME=MP−MF
⇔NE=PF⇔NE=PF
Xét ΔNSE,ΔPSFΔNSE,ΔPSF có :
ESNˆ=FSPˆESN^=FSP^ (đối đỉnh)
NE=FPNE=FP (cmt)
SNEˆ=SPFˆSNE^=SPF^ (suy ra từ ΔMNF=ΔMPEΔMNF=ΔMPE)
=> ΔNSE=ΔPSF(g.c.g)ΔNSE=ΔPSF(g.c.g)
c) Xét ΔMEFΔMEF có :
ME=MF(gt)ME=MF(gt)
=> ΔMEFΔMEF cân tại M
Ta có : MEFˆ=MFEˆ=180O−Mˆ2(1)MEF^=MFE^=180O−M^2(1)
Xét ΔMNPΔMNP cân tại M có :
MNPˆ=MPNˆ=180o−Mˆ2(2)MNP^=MPN^=180o−M^2(2)
Từ (1) và (2) => MEFˆ=MNPˆ(=180O−Mˆ2)MEF^=MNP^(=180O−M^2)
Mà thấy : 2 góc này ở vị trí đồng vị
=> EF//NP(đpcm)EF//NP(đpcm)
d) Xét ΔMKN,ΔMKPΔMKN,ΔMKP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MK : Chung
NK=PKNK=PK (K là trung điểm của NP )
=> ΔMKN=ΔMKP(c.c.c)ΔMKN=ΔMKP(c.c.c)
=> NMKˆ=PMKˆNMK^=PMK^ (2 góc tương ứng)
=> MK là tia phân giác của NMPˆNMP^ (3)
Xét ΔMSN,ΔMSPΔMSN,ΔMSP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MNSˆ=MPSˆMNS^=MPS^ ( do ΔMNF=ΔMPEΔMNF=ΔMPE)
MS:ChungMS:Chung
=> ΔMSN=ΔMSP(c.g.c)ΔMSN=ΔMSP(c.g.c)
=> NMSˆ=PMSˆNMS^=PMS^ (2 góc tương ứng)
=> MS là tia phân giác của NMPˆNMP^ (4)
Từ (3) và (4) => M , S, K thẳng hàng
Bài này tương tự nha bn
Min ko co thgian nên ko jup bn dc rồi
sr