Tìm điều kiện xác định của: \(\frac{1+x^2+\frac{1}{x}}{2+\frac{1}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
Bài 1 : Điều kiện xác định : \(x\ne\pm1\)
\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)
\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)
Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm
mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K
a) ĐKXĐ: x khác +-1
b) \(\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{x^2-1}\)
\(=\frac{x+1}{x-1}+\frac{x-2}{x+1}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2+x+5}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)^2+\left(x-2\right)\left(x-1\right)-\left(2x^2+x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-\frac{2}{x-1}\)
\(\frac{-5}{\frac{x-2}{3x+1}+1}=\frac{-5}{\frac{x-2+3x+1}{3x+1}}=\frac{-5}{\frac{4x-1}{3x+1}}=\frac{-5\left(3x+1\right)}{4x-1}=\frac{-15x-5}{4x-1}\)
phân thức xđ \(< =>4x-1\ne0< =>x\ne\frac{1}{4}\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
Để\(\frac{1+x^2+\frac{1}{x}}{2+\frac{1}{x}}\) được xác định <=> \(2+\frac{1}{x}\ne0\Leftrightarrow\frac{1}{x}\ne-2\Rightarrow x\ne\frac{-1}{2}\)