giải phương trình : 3x x 8(x/x+1) =36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
c) \(x^2-6x+8=0\\ < =>x^2-2x-4x+8=0\\ < =>\left(x^2-2x\right)-\left(4x-8\right)=0\\ < =>x\left(x-2\right)-4\left(x-2\right)=0\\ < =>\left(x-2\right)\left(x-4\right)=0\\ \left\{\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.=>\left\{\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy: tập nghiệm của pt là S= {2;4}.
a) \(x^2-4x+1=0\\ < =>\left(x^2-4x+4\right)-3=0\\ < =>\left(x-2\right)^2-3=0\\ < =>\left(x-2\right)^2=3\\ =>\left(x-2\right)=\sqrt{3}hoặc\left(x-2\right)=-\sqrt{3}\)
+) x-2= \(\sqrt{3}\) => x= \(\sqrt{3}+2\)
+) x-2 = \(-\sqrt{3}\)=> x= \(-\sqrt{3}+2\)
Vậy: tập nghiệm của pt là S= { \(-\sqrt{3}+2;\sqrt{3}+2\)}
a)
Theo bài ra ta có :
\(\left(x+7\right)\left(3x-1\right)-x^2+49=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(x^2-49\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)-\left(\left(x-7\right)\left(x+7\right)\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(3x-1-x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+7=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=-7\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;-7\right\}\)
Chúc bạn học tốt =))
a/
<=>(x+7)(3x-1)-(x^2-7^2)=0
<=>(x+7)(3x-1)-(x-7)(x+7)=0
<=>(x+7)(3x-1-x+7)=0
<=>(x+7)(2x+6)=0
<=>x+7=0 hoặc 2x+6=0
<=>x=-7 2x=-6
<=> x=-3
=>S (-7;-3)
DK:....
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
Dat \(\sqrt{1+x}+\sqrt{8-x}=p\)
\(\Leftrightarrow p^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\)
\(\Leftrightarrow\frac{p^2-9}{2}=\sqrt{\left(1+x\right)\left(8-x\right)}\)
Ta co bien doi :
\(pt\Leftrightarrow p+\frac{p^2-9}{2}=3\)
\(\Leftrightarrow\frac{p^2+2p-9}{2}=3\)
\(\Leftrightarrow p^2+2p-15=0\)
\(\Leftrightarrow\left(p+5\right)\left(p-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}p=-5\\p=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}+\sqrt{8-x}=-5\left(loai\right)\\\sqrt{1+x}+\sqrt{8-x}=3\left(chon\right)\end{matrix}\right.\)
\(\Leftrightarrow1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1+x=0\\8-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)( thoa )
Vay...