cho a chia hết cho c và b chia hết cho c.Chứng minh rằng: ma+nb chia hết cho c;ma-nb chia hết cho c;m,n thuộc N
giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
ví dụ :
a = 80 . b = 40 . c = 4
thì : a : b = 80 : 40 = chia hết
b : c = 40 : 4 = chia hết
a : c = 80 : 4 = chia hết
Vậy : a : c = chia hết
Vì : a chia hết cho b nên a = b . k1 ( k1 \(\in\) N ) ( 1 )
Vì : b chia hết cho c nên b = c . k2 ( k2 \(\in\) N ) ( 2 )
Từ ( 1 ) và ( 2 )
=> a = c . k1 . k2
=> a = c . k ( k = k1 . k2 )
=> a chia hết cho c
Thông ơi ! Bạn và mk 1 đề nè
Đó là bài 5 đúng không
Khảo sát chất lượng học kì I huyện Can Lộc
Nếu đúng thì k mk nha
Hihi
^_^
a chia hết cho b => a = b.m (m \(\in\) N)
a chia hết cho c => a = c.n (n \(\in\) N)
=> b.m = c.n => m = \(\frac{c.n}{b}\). Vì (c;b) = 1 m là số tự nhiên nên n chia hết cho b
=> n = b.q (q \(\in\) N)
=> a = c.n = c.b.q => a chia hết cho b.c
a chia hết cho b => a = bm (m \(\in\) N)
a chia hết cho c => a = cn (n \(\in\) N)
Vậy bm = cn. Do đó n = \(\frac{bm}{c}\)
Mà ƯCLN(b ; c) = 1 và n \(\in\) N nên m chia hết cho c
=> m = ck (k ∈ N)
=> a = bm = bck
Vậy a chia hết cho b.c
a ⋮ c => ma ⋮ c (1)
b ⋮ c => nb ⋮ c (2)
Từ (1) ; (2) => ma + nb ⋮ c ( tính chất )
Cũng Từ (1) ; (2) => ma - nb ⋮ c ( tính chất )