K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

4 tháng 3 2023

Theo bài ra ta có :

a = m.k ;          b = m.n;         a + b + c = m.d  (k; n; d \(\in\) Z)

⇒ c = m.d - (a+b) 

⇒a + b = m.k + m.n = m(k+n) 

Thay a + b = m(k+n) vào biểu thức c = m.d - (a+b) ta có:

c = m.d - m(k+n)

c = m.( d-k-n) Vì d,k,n \(\in\) Z nên => c ⋮ m (đpcm)

 

 

8 tháng 5 2021

Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.

Áp dụng công thức

- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết

11 tháng 10 2021

ta có một phép tính ví dụ 2CH 2;4CH2 mà3 KC2 nên2c4c3KCm

11 tháng 10 2021

bạn cho mình sao nhé