Chứng minh: 1/3+1/3^2+1/3^3+...1/3^99 < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
a) 1/2-1/4+1/8-1/16+1/32-1/64<1/3
b) 1/3-2/3^2+3/3^3-3/3^4+...+99/3^99-100/3^100<3/16
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)
Vậy \(A< \frac{1}{2}.\)
Chúc bạn học tốt!
M=1/3+1/3^2+...+1/3^99
3M=1+1/3+1/3^2+...+1/3^98
3M+1/3^99=1+1/3+...+1/3^99=1+M
3M-M=1-1/3^99
2M=1-1/3^99
M=(1-1/3^99)/2
Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2
Vậy M<1/2
S=1/3+1/3^2+1/3^3+...+1/3^99
=>3S=1+1/3+1/3^2+1/3^3+....+1/3^98
=>3S-S=(1+1/3+1/3^2+...1/3^98)-(1/3+1/3^2+...+1/3^99)
=>2S=1-1/3^99
=>2S=(3^99-1)/3^99
=>S=(3^99-1)/2.3^99
=>S=1/2-1/2.3^99.
Vì 1/2-1/2.3^99<1/2
=>S<1/2 (đpcm)
Ta có:
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...\dfrac{1}{3^{99}}\\ \Rightarrow3S=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...\dfrac{1}{3^{99}}\right)\\ =1+\dfrac{1}{3}+\dfrac{1}{3^2}+...\dfrac{1}{3^{98}}\\ \Rightarrow3S-S=1-\dfrac{1}{3^{98}}\\ \Rightarrow2S=1-\dfrac{1}{3^{98}}< 1\\ S< \dfrac{1}{2}.đpcm\)