Giúp mình giải câu này nhanh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\)
Do đó đường thẳng AB nhận \(\left(-1;2\right)\) là 1 vtpt
4.
\(\overrightarrow{AB}=\left(-a;b\right)\)
\(\Rightarrow\) Đường thẳng AB nhận (b;a) là 1 vtpt
9.
Phương trình đường thẳng AB: \(3x-y-7=0\)
Trung điểm đoạn thẳng AB: \(I=\left(2;-1\right)\)
Trung trực đoạn AB vuông góc với AB có phương trình dạng: \(\left(\Delta\right):x+3y+m=0\)
Mà I thuộc \(I\in\Delta\Rightarrow2-3+m=0\Leftrightarrow m=1\)
\(\Rightarrow\Delta:x+3y+1=0\)
10.
Phương trình đường thẳng AB: \(y+4=0\)
Trung điểm đoạn thẳng AB: \(I=\left(2;-4\right)\)
Trung trực đoạn AB vuông góc với AB có phương trình dạng: \(\left(\Delta\right):x+m=0\)
Mà I thuộc \(I\in\Delta\Rightarrow2+m=0=0\Leftrightarrow m=-2\)
\(\Rightarrow\Delta:x-2=0\)
\(sin\left(\dfrac{3\pi}{2}-x\right)+tan^2x=sin\left(\pi+\dfrac{\pi}{2}-x\right)+\dfrac{sin^2x}{cos^2x}=-sin\left(\dfrac{\pi}{2}-x\right)+\dfrac{1-cos^2x}{cos^2x}\)
\(=-cosx+\dfrac{1-cos^2x}{cos^2x}=-a+\dfrac{1-a^2}{a^2}=\dfrac{-a^3-a^2+1}{a^2}\)
\(\Rightarrow\left\{{}\begin{matrix}m=-1\\n=-1\end{matrix}\right.\)
74.
\(cos\left(\dfrac{3\pi}{2}-x\right)+cot^2x=cos\left(\pi+\dfrac{\pi}{2}-x\right)+\dfrac{cos^2x}{sin^2x}=-cos\left(\dfrac{\pi}{2}-x\right)+\dfrac{1-sin^2x}{sin^2x}\)
\(=-sinx+\dfrac{1-sin^2x}{sin^2x}=-a+\dfrac{1-a^2}{a^2}=\dfrac{-a^3-a^2+1}{a^2}\)
\(\Rightarrow m=n=-1\)
Do A thuộc \(\Delta\) nên tọa độ có dạng: \(A\left(t;2-t\right)\Rightarrow\overrightarrow{MA}=\left(t-1;3-t\right)\)
\(AM=\sqrt{2}\Leftrightarrow AM^2=2\Rightarrow\left(t-1\right)^2+\left(3-t\right)^2=2\)
\(\Leftrightarrow2t^2-8t+8=0\Rightarrow t=2\Rightarrow A\left(2;0\right)\)
\(\Rightarrow B=2.2+0=4\)
a: \(3H_2+Fe_2O_3\rightarrow2Fe+3H_2O\)
b: \(n_{Fe_2O_3}=\dfrac{16}{160}=0.1\left(mol\right)\)
\(\Leftrightarrow n_{H_2O}=n_{H_2}=0.1\cdot3=0.3\left(mol\right)\)
\(v_{H_2}=0.3\cdot22.4=6.72\left(lít\right)\)
1 Van Mieu-Quoc Tu Giam is a famous historical and cultural ralic in Ha Noi
2 Quoc Tu Giam educated the thousands of talented men for the country
3 Hoi An used to be an important trading center in Southeast Asian.
4 Hoi An was certified as a World Cultural Heritage Site World by UNESCO.
5 Hue ,an ancient capital , is an attractive destination to tourists.
6 Nha Rong Harbour is the place where President Ho Chi Minh decided to go abroad to find out the way of liberation of our country .
7 Ha Noi is the culture and politics center the whole of country.