K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

- Đề sai nha bạn :)

8 tháng 10 2019

A B C D M N

Có : \(S_{ABCD}=36cm^2\Rightarrow BC^2=36\Rightarrow BC=6cm\left(Vi:BC>0\right)\)

Vì ABCD là hình vuông (gt)

\(\Rightarrow BC=DC=AD=AB=6\left(cm\right)\)

Mà :  M , N lần lượt là trung điểm của BC , CD 

\(\Rightarrow BM=MC=DN=NC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)

Có : \(S_{AMN}=S_{ABCD}-\left(S_{ADN}+S_{ABM}+S_{NMC}\right)\)

\(=36-\left(\frac{1}{2}.AD.DN+\frac{1}{2}.AB.BM+\frac{1}{2}.MC.NC\right)\)

\(=36-\left(\frac{1}{2}.6.3+\frac{1}{2}.6.3+\frac{1}{2}.3.3\right)=\frac{27}{2}\left(cm^2\right)\)

Chúc bạn học tốt !!!

18 tháng 12 2019

Đáp án đúng : C

15 tháng 1 2019

Mặt trụ tạo bởi hình vuông ABCD khi quay quanh MN có đường cao h = a và bán kính đáy 

Diện tích 1 đáy và diện tích xung quanh của hình trụ là:

Nên có diện tích toàn phần của hình trụ:

Mặt cầu (S) có bán kính R có diện tích bằng Stp của mặt trụ nên:

a: Xét ΔABD có 

M là tđiểm của AB

Q là tđiểm của AD
Do đó:MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N là tđiểm của BC

P là tđiểm của CD

Do đó: NP là đường trung bình

=>NP=BD/2 và NP//BD(2)

Xét ΔABC có 

M là tđiểm của AB

N là tđiểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MN=MQ

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

mà MN=MQ

nên MQPN là hình thoi

 

28 tháng 1 2016

chit

17 tháng 9 2020

a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành

b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)

Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)

Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)

c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)

16 tháng 9 2020

A B C D H N M

a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC 

=> MN là đtb của tg DHC (đn)

=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN

     MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB

=> ABMN là hình bình hành (dấu hiệu)

b, MN // DC (câu a) DC _|_ AD (gt)

=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM 

=> N là trực tâm của tg DAM

=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)

=> DM _|_ BM (TC)

=> ^BMD = 90

c, có CD thì tính đc AB xong tính bth