Cho biểu thức A=2+22+23+...+2100.Tìm x biết 2(A+2)=22x
SOS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101
A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101
Xét dãy số:0; 1; 2; 3;...; 100; 101
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (101 - 0) : 1 + 1 = 102 (số)
Vì 102 : 3 = 34
Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được
A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)
A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)
A = (1 + 21 + 22).(1 + 23 + ...+ 299)
A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)
Phương pháp:
Biểu thức √f(x)�(�) xác định ⇔f(x)≥0.⇔�(�)≥0.
Cách giải:
a) √x−3�−3
Biểu thức √x−3�−3 xác định ⇔x−3≥0⇔�−3≥0 ⇔x≥3.⇔�≥3.
Vậy x≥3�≥3 thì biểu thức √x−3�−3 xác định.
b) √−22x−1−22�−1
Biểu thức √−22x−1−22�−1 xác định ⇔−22x−1≥0⇔−22�−1≥0 ⇔2x−1<0⇔2�−1<0 ⇔x<12⇔�<12
Vậy với x<12�<12 thì biểu thức √−22x−1−22�−1 xác định.
a, \(\sqrt{x-3}\)
điều kiện để biểu thức xác định là:
\(x-3\) ≥ 0
\(x\ge\) 3
b, \(\sqrt{-2x^2-1}\)
Điều kiện để biểu thức trong căn xác định là:
- 2\(x^2\) - 1 ≥ 0
ta có \(x^2\) ≥ 0 ∀ \(x\)
⇒ -2\(x^2\) ≤ 0 ∀ \(x\) ⇒ -2\(x^2\) - 1 ≤ 0 ∀ \(x\)
Vậy không có giá trị nào của \(x\) để biểu thức trong căn có nghĩa hay
\(x\in\) \(\varnothing\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+6.2^2+...+6.2^{98}\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+2^3\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
A=(2+2^2+2^3+2^4)+2^4(2+2^2+2^3+2^4)+...+2^96(2+2^2+2^3+2^4)
=30(1+2^4+...+2^96) chia hết cho 10
\(A=2+2^2+2^3+...+2^{100}\)
\(2A=2\times\left(2+2^2+2^3+...+2^{100}\right)\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(2\left(A+2\right)=2^{2x}\)
\(2\left[\left(2^{101}-2\right)+2\right]=2^{2x}\)
\(2\times2^{101}=2^{2x}\)
\(2^{102}=2^{2x}\)
\(2x=102\)
\(x=\dfrac{102}{2}\)
\(x=51\)
x = 51