Giải giúp mk với :(x-1).(2x+4)<0;(6-2x).(x+5)>0 và (x+2).(3x-9)<0 .Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-2x^2-144x+1295=0\)
\(\Rightarrow\)Cậu xem lại đề thử xem nhé !
2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)
\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)
\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)
\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-2=0\)
hoặc \(x^2+x+4=0\)
\(\Leftrightarrow\)\(x=-3\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
3) \(x^4-2x^3+4x^2-3x-10=0\)
\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)
\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-2=0\)
hoặc \(x^2-x+5=0\)
\(\Leftrightarrow x=-1\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)
\(a)\) \(\left(x-1\right)\left(2x-3\right)>0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-4>0\\2x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>4\\2x>3\end{cases}\Leftrightarrow}\hept{\begin{cases}x>4\\x>\frac{3}{2}\end{cases}}}\)
\(\Rightarrow\)\(x>4\)
Trường hợp 2 :
\(\hept{\begin{cases}x-4< 0\\2x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 4\\2x< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 4\\x< \frac{3}{2}\end{cases}}}\)
\(\Rightarrow\)\(x< \frac{3}{2}\)
Vậy \(x>4\) hoặc \(x< \frac{3}{2}\)
Chúc bạn học tốt ~
\(b)\) \(\left(x-1\right)\left(2x+5\right)< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-1< 0\\2x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\2x>-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 1\\x>\frac{-5}{2}\end{cases}}}\)
\(\Rightarrow\)\(\frac{-5}{2}< x< 1\)
Trường hợp 2 :
\(\hept{\begin{cases}x-1>0\\2x+5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\2x< -5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>1\\x< \frac{-5}{2}\end{cases}}}\) ( loại )
Vậy \(\frac{-5}{2}< x< 1\)
Chúc bạn học tốt ~
Để \(\left(2x+5\right)\left(4-\frac{1}{2}x\right)< 0\)
=> : \(\orbr{\begin{cases}2x+5< 0\\4-\frac{1}{2}x< 0\end{cases}}\)
=> \(\orbr{\begin{cases}2x< -5\\\frac{1}{2}x< 4\end{cases}}\)
=> \(\orbr{\begin{cases}x< -\frac{5}{2}\\x< 8\end{cases}}\)
Vậy để : \(\left(2x+5\right)\left(4-\frac{1}{2}x\right)< 0\) thì \(x< \frac{-5}{2}\) hoặc : \(x< 8\)
\(\left(2x+5\right).\left(4-\frac{1}{2}x\right)< 0\)
=) \(2x+5< 0\)và \(4-\frac{1}{2}x>0\)
hoặc \(2x+5>0\)và \(4-\frac{1}{2}< 0\)
\(TH1:2x+5< 0\)và \(4-\frac{1}{2}x>0\)
* \(2x+5< 0\)=) \(2x< -5\)=) \(x< \frac{-5}{2}\)
* \(4-\frac{1}{2}x>0\)=) \(\frac{1}{2}x< 4\)=) \(x< 4:\frac{1}{2}=8\)
Vậy \(x< \frac{-5}{2}< 8\)=) Với \(x< \frac{-5}{2}=-2,5\)thì thỏa mãn đề bài
\(TH2:\left(2x+5\right)>0\)và \(4-\frac{1}{2}x< 0\)
* \(2x+5>0\)=) \(2x>-5\)=) \(x>\frac{-5}{2}\)
* \(4-\frac{1}{2}x< 0\)=) \(\frac{1}{2}x>4\)=) \(x>4:\frac{1}{2}=8\)
Vậy \(\frac{-5}{2}< 8< x\)
Vậy \(x>8\)thì thỏa mãn đề bài
Vậy \(x< \frac{-5}{2}\), \(x>8\)thì thỏa mãn đề bài .
|x+2|<3
\(\Rightarrow-3\le x+2\le3\)3
\(\Rightarrow-1\le x\le1\)
\(\Rightarrow x=-1;0;1\)
\(1,\left(3x+2\right)\left(5-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)
\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)
\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{9}{46}\)
Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)
\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)
\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)
\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)
\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)
\(\Leftrightarrow6x-4=16\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)
\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Rightarrow5x-5=4x+8\)
\(\Rightarrow x=13\left(tmdk\right)\)
Vậy \(S=\left\{13\right\}\)
Tìm x nha các bn
xin loi nhung mik hong bit