K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

a) 4x2 - 12x + 11=4x2-12x+9+2=(2x-3)2+2

vì (2x-3)2\(\ge\)0

nên (2x-3)2+2 dương với mọi x

=>4x2 - 12x + 11luôn luôn dương với mọi x

b) x2 - 2x + y2 + 4y + 6

=x2-2x+1+y2+4y+4+1

=(x-1)2+(y+2)2+1

vì (x-1)2\(\ge\)0 ; (y+2)2\(\ge\)0

nên (x-1)2+(y+2)2+1 dương với mọi x;y

=>x2 - 2x + y2 + 4y + 6  luôn dương với mọi x;y

24 tháng 10 2016

a/B=x2+2x+2013

5 tháng 10 2021

\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

\(B=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

29 tháng 7 2016

-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2

Ta có : -(x-4)2<= 0

suy ra: -(x-4)2-(y-2)2<=0 (dpcm)

banh

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

22 tháng 10 2021

a: \(A=\left(x+1\right)\left(x-2\right)-x\left(2x-3\right)+2x^2+4\)

\(=x^2-x-2-2x^2+3x+2x^2+4\)

\(=x^2+2x+2\)

22 tháng 10 2021

\(a,A=x^2-x-2-2x^2+3x+4+2x^2=x^2+2x+2\\ c,A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\)

28 tháng 7 2016

Hỏi đáp Toán

NV
30 tháng 7 2021

a. Đề sai, với \(x=0\Rightarrow A=4>0\)

b. Đề sai, với \(x=0\Rightarrow B=12>0\)

Đề sai rồi bạn

NV
1 tháng 3 2022

\(A=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)

\(A_{min}=10\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

\(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(B_{min}=-36\) khi \(x^2+5x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4x+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(1;2\right)\)

1 tháng 3 2022

thank you

18 tháng 2 2021

3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2  4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24

19 tháng 8 2021

x^2-8x+20=(x^2-8x+16)+4

                 =(x-4)^2+4>0(vì (x-4)^2>=0)

4x^2-12x+11=4x^2-12x+9+2

                     =(2x-3)^2+2>0

x^2-x+1=x^2-x+1/4+3/4

             =(x-1/2)^2+3/4>0

x^2-2x+y^2+4y+6

=x^2-2x+1+y^2+4y+4+1

=(x-1)^2+(y+2)^2+1>0

a: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(4x^2-12x+11\)

\(=4x^2-12x+9+2\)

\(=\left(2x-3\right)^2+2>0\forall x\)

c: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

d: Ta có: \(x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)