Cho F(x)=|x+3|+|7-x|
a) Tìm x biet F(x)=14
b) Tìm GTNN của F(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F=[(x-1)(x+5)][(x-3)(x+7)]=(x2+4x-5)(x2+4x-21)
Đặt x2+4x-5=y suy ra F= y(y-16)=y2-16y=y2-16y+64-64=(y-8)2-64\(\ge\)-64
Xảy ra đẳng thức khi và chỉ khi y=8\(\Leftrightarrow\)x2+4x-13=0\(\Leftrightarrow\)(x+2)2-17=0\(\Leftrightarrow\left(x+2+\sqrt{17}\right)\left(x+2-\sqrt{17}\right)\)suy ra \(x=-2+\sqrt{17}\)hoặc \(x=-2-\sqrt{17}\)
min F=-64 khi và chỉ khi \(x=-2+\sqrt{17}\)hoặc \(x=-2-\sqrt{17}\)
a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12
= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x
Dấu "=" xảy ra khi x = 5/6
Vậy MaxA = 25/12 <=> x = 5/6
b) Từ x + y = 7 => x = 7 - y
Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y
Dấu "=" xảy ra <=> y = 7/2 => x = 7/2
Vậy Max(xy) = 49/4 <=> x = y = 7/2
( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )