K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

a) n+3 chia hết cho n+1

Hay n+1+2 chia hết cho n+1

2 chia hết cho n+1

Hay n+1 thuộc ước của 2.

Mà Ư(2)=1;2

Suy ra n=0 hoặc n=1.

Vậy n=0 hoặc 1.

b)4n+3 chia hết cho 2n+1

Hay 2n+1+2n+2 chia hết cho n+1

2n+2 chia hết cho 2n+1

2n+1+1 chia hết cho 2n+1

1 chia hết cho 2n+1

Suy ra n=0

Vậy n=0

24 tháng 1 2017

a)Ta có:n+3 chia hết cho n-1

Hay (n-1)+4 chia hết cho n-1

Mà n-1 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 thuộc Ư(4)

=>Ư(4)={1;2;4}

=>n-1={1;2;4}

=>n={2;3;5}

b)Ta có:4n+3 chia hết cho 2n+1

Hay (4n+2)+1 chia hết cho 2n+1

=>2(2n+1)+1chia hết cho 2n+1

Mà 2(2n+1) chia hết cho 2n+1

=>1 chia hết cho 2n+1

=>2n+1=1

=>2n=1-1

=>2n=0

=>n=0:2

=>n=0

  • Chú ý:những thừ như" chia hết cho" bạn nên viết vào vở bằng kí hiệu
25 tháng 12 2020

Ta có: n+3 chia hết cho n-1

mà: n-1 chia hết cho n-1

suy ra:[(n+3)-(n-1)]chia hết cho n-1

              (n+3-n+1)chia hết cho n-1

                        4    chia hết cho n-1

                  suy ra n-1 thuộc Ư(4)

           Ư(4)={1;2;4}

suy ra n-1 thuộc {1;2;4}

Ta có bảng sau:

n-1          1             2           4

n              2             3           5

    Vậy n=2 hoặc n=3 hoặc n=5 

 

25 tháng 12 2020

cảm ơn bạn nhaok

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

28 tháng 10 2021

a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;4\right\}\)

b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)

\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;3\right\}\)

24 tháng 9 2021

\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)

15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11 2024

Bạn này làm sai r

DT
24 tháng 1 2023

\(\left(n+3\right)⋮\left(n-1\right)=>\left(n-1\right)+4⋮\left(n-1\right)\\ =>4⋮\left(n-1\right)\\ =>n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{0;2;-1;3;-3;5\right\}\)

DT
24 tháng 1 2023

\(\left(4n+3\right)⋮\left(2n+1\right)=>2\left(2n+1\right)+1⋮\left(2n+1\right)\\ =>1⋮\left(2n+1\right)\\ =>2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\\ =>2n\in\left\{0;-2\right\}\\ =>n\in\left\{0;-1\right\}\)

22 tháng 11 2020

a, \(2n+7⋮n+1\)

\(2\left(n+1\right)+5⋮n+1\)

\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n + 11-15-5
n0-24-6

b, \(4n+9⋮2n+3\)

\(2\left(2n+3\right)+3⋮2n+3\)

\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

2n + 31-13-3
2n-2-40-6
n-1-20-3
14 tháng 12 2020

4-3=2 yêu anh ko hề sai

3 tháng 7 2016

a) n+3 chia hết cho n-2

=>n-2+5 chia hết cho n-2

=> 5 chia hết cho n-2

U(5)=1;5

=>n=3;7 

3 tháng 7 2016

Ta có: n + 3 chia hết cho n - 2

<=> n - 2 + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 thuộc Ư(5) = {-1;1;-5;5}

=> n = {1;3;-3;7}

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n1213n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+94n16n+9⋮4n−1

2.(6n+9)4n1⇒2.(6n+9)⋮4n−1

12n+184n1⇒12n+18⋮4n−1

12n3+214n1⇒12n−3+21⋮4n−1

3.(4n1)+214n1⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n1)4n1214n13.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n114n−1≥−1 do nNn∈N

4n1{1;3;7}⇒4n−1∈{−1;3;7}

4n{0;4;8}⇒4n∈{0;4;8}

n{0;1;2}