trong các số tự nhiên có 3 chữ số , có bao nhiêu số :
a) các chữ số đều khác nhau
b) có ít nhất 2 chữ số như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
a) Nhỏ nhất: 2357 ; lớn nhất: 75321
b) 10258
c) Bạn cần viết rõ đè hơn nha
d) 6000 số
e) 882 số
g) 100 số
cảm ơn bạn nhiều minh nguyễn cao chắc hẳn bạn là 1 người tốt bụng
Rồi nhá,gặp thánh rồi
1.Số tự nhiên là vĩnh cửu,không thể tìm ra một con số chính xác
2.(Tìm được,nhưng mình không giải được)
3.Như câu 1
4.Như câu 3
OK?
25 số sai đấy phải là 125 số
có 252 số có 3 chữ có ít nhất 2 số giống nhau
Số tự nhiên đó có dạng \(\overline{abcde}\)
a, a có 5 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
d có 3 cách chọn.
e có 2 cách chọn.
\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.
b, TH1: \(e=0\)
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.
TH2: \(e\ne0\)
a có 5 cách chọn.
e có 2 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.
Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.
c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.
TH2: \(e=5\)
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.
Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.
1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))
* ta có h là :
h= mn
trong đó tập hợp mn là {0,1}
=> có 2 trường hợp xảy ra
(m,n)=(1,0) hoặc (0,1)
* ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}
a có 9 cách chọn
b có 8 cách chọn
c có 7 cách chọn
e có 6 cách chọn
vậy có 9*8*7*6=3024 số
*ta phải loại trường hợp h đứng đầu và có dạng 01
trường hợp h đứng đầu và có dạng 01 có số cách chọn là :
a có 1 cách chọn là h
b có 8 cách
c có 7 cách
e có 6 cách
=> có 1*8*7*6=336 số
vậy số tự nhiên theo yêu cầu đề bài có tổng cộng
3024 - 332688 số
0 chắc