tìm GTNN của A=/x-2016/+/x+2017/+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= |x-2016| + |x-2017|
=> A= |x-2016| + |2017-x|
Ta có: |x-2016| ≥ x-2016 x. Dấu bằng xảy ra khi x-2016 ≥ 0
|2017-x| ≥ 2017-x x. Dấu bằng xảy ra khi 2017-x ≥ 0
=> |x-2016| + |2017-x| ≥ x-2016+2017-x x
=> A ≥ 1 x
Dấu "=" xảy ra khi x-2016 ≥ 0 và 2017-x ≥ 0
=>x ≥ 2016 và -x ≥ -2017
=> x ≥ 2016 và x ≤ 2017
=> 2016 ≤ x ≤ 2017
Vậy giá trị nhỏ nhất của A là 1 tại 2016 ≤ x ≤ 2017.
Vì \(\left|x-7\right|\ge0;\left|x-2016\right|\ge0;\left|x-2017\right|\ge0\)
Suy ra:\(\left|x-7\right|+\left|x+2016\right|+\left|x-2017\right|\ge0\)
Dấu = xảy ra khi x-7=0;x=7
x+2016=0;x=-2016
x-2017=0;x=2017
Vậy Min A=0 khi x=7;-2016;2017
A = |x-7|+|x-2016|+|x-2017|
= |x-7|+|x-2016|+|2017-x|
≥ |x-7+2017-x|+|x-2016| = 2017+|x-2016|≥2017
để A nhỏ nhất => A = 2017
=> |x - 2016| = 0 => x = 2016
- Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\left|x+2\ge0\forall x\right|\)
......
\(\left|x-2017\ge0\forall x\right|\)
- Suy ra: \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+.....+\left|x+2017\right|\ge0\forall x\)
=> \(\left|x+1\right|+\left|x+2\right|+....+\left|x+2017\right|+100\ge100\forall x\)
- Dấu bằng xảy ra khi
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+2017\right|=0\)
- Suy ra : Giá trị nhỏ nhất của A ( MinA) = 100
<=> \(\left|x+1\right|+\left|x+2\right|+...+\left|x+2017\right|=0\).
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3