K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Ta thấy rằng \(\sqrt{x};\sqrt{y}\) không thể cùng đồng thời là số vô tỉ hoặc có 1 số vô tỉ, 1 số hữu tỉ hoặc có 1 số hữu tỉ, 1 số tự nhiên hoặc có 1 số vô tỉ, 1 số tự nhiên vì \(\sqrt{x}+\sqrt{y}=a\in N\)do đó \(\sqrt{x};\sqrt{y}\) chỉ có thể cùng hữu tỉ hoặc cùng là số tự nhiên

Giả sử \(\sqrt{x};\sqrt{y}\) là số hữu tỉ thì \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{b}{d}\left(b,d\ne0;b,d\in Z\right)\\\sqrt{y}=\dfrac{c}{e}\left(c,e\ne0;c,e\in Z\right)\end{matrix}\right.\); b,d cùng dấu; c,e cùng dấu; (b,d)=1; (c,e)=1

Ta có: \(\sqrt{x}+\sqrt{y}=\dfrac{b}{d}+\dfrac{c}{e}=\dfrac{be+cd}{de}=a\in N\)

\(\Rightarrow\left\{{}\begin{matrix}be+cd⋮d\\be+cd⋮e\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}be⋮d\\cd⋮e\end{matrix}\right.\). Mà (b,d)=1; (c,e)=1 nên \(\left\{{}\begin{matrix}e⋮d\\d⋮e\end{matrix}\right.\)=> d = e

Lại có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}=a^2\in N\) và x;y \(\in N\)

nên \(2\sqrt{xy}=2.\dfrac{bc}{de}=2.\dfrac{bc}{d^2}=2.\dfrac{bc}{e^2}\in N\)

+) d (hay e) \(⋮2\) thì d2 (hay e2) \(⋮4\)\(2.\dfrac{bc}{d^2}\) (hay \(2.\dfrac{bc}{e^2}\)) \(\in N\)nên bc \(⋮2\) => \(\left[{}\begin{matrix}b⋮2\\c⋮2\end{matrix}\right.\), mâu thuẫn với (b,d)=1; (c;e)=1

+) d (hay e) \(⋮̸\)2 thì \(\dfrac{bc}{d^2}\in N\Rightarrow\) \(bc⋮d^2\) mà (b;d)=1 nên c \(⋮d^2\) hay \(c⋮e^2\), mâu thuẫn với (c;e)=1

Như vậy điều giả sử là sai

=> \(\sqrt{x};\sqrt{y}\in N\left(đpcm\right)\)

28 tháng 11 2015

a) Ta có: 

\(10^n+72n-1=\left(10^n-1\right)+72n=999...9+72n=9.111...11+72\)

                                                                                                       -------------                                   ----------------

                                                                                                      n chữ số                                      n chữ số 

\(=9\left(111...11-n\right)+9n+72n=9\left(111...11-n\right)+81n\)

             ----------------                                                                 ----------------

              n chữ số                                                                      n chữ số

Vì n là tổng các chữ số của 111...11 nên 111...11-n chia hết cho 9 

                                                  -----------         -----------

                                                    n c/số             n c/số

=> 9(111...11-n) chia hết cho 9.9 hay 9(111...11-n) chia hết cho 81

          ----------                                                ----------

           n c/số                                                  n c/số

Mà 81n chia hết cho 81 nên 9(111...11-n)+81n chia hết cho 81 hay \(10^n+72n-1\) chia hết cho 81

\(\left(n\in N\right)\)

 Vậy \(10^n+72n-1\) chia hết cho 81 \(\left(n\in N\right)\)

28 tháng 11 2015

b)  Với \(x,y\in N\) ta có:

      3(2x+y)-(x+3y)=6x+3y-x-3y=(6x-x)+(3y-3y)=5x 

Vì 5 chia hết cho 5 nên 5x chia hết cho 5 hay 3(2x+y)+(x+3y) chia hết cho 5                                        \(\left(1\right)\)

Vì 2x+y chia hết cho 5 nên 3(2x+y) chia hết cho 5                                                                                       \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)=> x+3y chia hết cho 5

               Vậy x+3y chia hết cho 5

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

10 tháng 5 2015

Ta có : \(\frac{x}{x+y+z+t}<\frac{x}{x+y+z}<\frac{x}{x+y}\)

           \(\frac{y}{x+y+z+t}<\frac{y}{x+y+z}<\frac{y}{x+y}\)

           \(\frac{z}{x+y+z+t}<\frac{z}{x+y+z}<\frac{z}{x+y}\)

           \(\frac{t}{x+y+z+t}<\frac{t}{x+y+z}<\frac{t}{x+y}\)

=> \(\frac{x+y+z+t}{x+y+z+t}\)<A<\(\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{z}{z+t}+\frac{t}{z+t}\right)\)=> 1< A<2=> A ko phải là số tự nhiên

đúng cái nha

6 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

AH
Akai Haruma
Giáo viên
28 tháng 2 2023

Lời giải:

Do $x,y,z>0$ nên:

$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$

Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$

$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$

Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$

Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.

8 tháng 5 2016

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)