GTLN của \(P=\frac{1}{x^2+2x+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)
\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)
\(\Rightarrow x^2-3x-6=0\)
.....
\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)
\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)
.....
Ta có:
(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z
=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z
=> A \(\ge\) -1 \(\forall\) x \(\in\) Z
Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0
=> 2x + \(\frac{1}{3}\) = 0
=> 2x = 0 - \(\frac{1}{3}\)
=> 2x = \(\frac{-1}{3}\)
=> x = \(\frac{-1}{6}\)
Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).
b) Lại có:
- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z
=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z
=> B \(\le\) 3 \(\forall\) x \(\in\) Z
Dấu "=" xảy ra khi:
(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0
=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0
=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)
=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)
=> x = \(\frac{3}{10}\)
Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)
a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)
b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)
\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)
\(\Rightarrow B\le3\)
Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)
Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
\(P=\frac{1}{x^2+2x+6}=\frac{1}{\left(x^2+2x+1\right)+5}\)
\(=\frac{1}{\left(x+1\right)^2+5}\le\frac{1}{5}\)