tìm số tự nhiên nhỏ nhất có 3 chữ số .biết nếu chia số đó cho 12 thì dư 7 còn chia cho 13 thì dư 4 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
Để tìm số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài, ta cần tìm số đó bằng cách thử từng số tự nhiên có 2 chữ số cho đến khi tìm được số thỏa mãn yêu cầu.
Ta gọi số cần tìm là AB (với A và B lần lượt là chữ số hàng chục và hàng đơn vị của số đó). Theo đề bài, ta có:
- AB chia cho 8 dư 7: tức là AB = 8k + 7 với k là số nguyên dương nào đó.
- AB chia cho 7 dư 4: tức là AB = 7m + 4 với m là số nguyên dương nào đó.
Từ hai phương trình trên, ta suy ra:
- 8k + 7 = 7m + 4
- 8k - 7m = -3
Để giải phương trình này, ta thử các giá trị nguyên dương của k và m cho đến khi tìm được cặp giá trị thỏa mãn phương trình. Ta có:
- Khi k = 1, m = 2: 8 - 7 = -3 (không thỏa mãn)
- Khi k = 2, m = 3: 16 - 21 = -5 (không thỏa mãn)
- Khi k = 3, m = 4: 24 - 28 = -4 (khớp với phương trình)
Vậy số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài là số 27.
👍
Những số có 2 chữ số chia cho 8 dư 7 là:
16+7,24+7,32+7,40+7,...88+7
= 23,31,39,47,...,95
Những số có 2 chữ số chia 7 dư 4 là:
14+4,21+4,28+4,...91+4
= 18,25,32,39,...95
Ở 2 dãy số trên, ta thấy số bé nhất mà 2 dãy lặp lại là 39, nên số cần tìm mà thỏa mãn đề bài là số 39
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
=1600