Tìm số tự nhiên n để
n2 +3 chia hết cho n - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3n+5⋮3n-1\Rightarrow6+3n-1⋮3n-1\)
Mà \(3n-1⋮3n-1\Rightarrow6⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(6\right)\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
\(\Rightarrow n\in\left\{\frac{-5}{3};\frac{-2}{3};\frac{-1}{3};0;\frac{2}{3};1;\frac{4}{3};\frac{7}{3}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b)\(2n+3⋮2n-1\Rightarrow4+2n-1⋮2n-1\)
Mà \(2n-1⋮2n-1\Rightarrow4⋮2n-1\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow n\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Hok Tốt!
1) \(\left(n+3\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+2⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
2) \(\Rightarrow2\left(3n+4\right)+4⋮\left(3n+4\right)\)
\(\Rightarrow\left(3n+4\right)\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0\right\}\)
3) \(\Rightarrow2\left(3n+6\right)-9⋮\left(3n+6\right)\)
\(\Rightarrow\left(3n+6\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{1\right\}\)
Ta có: n + 3 ⋮ n + 1 và n + 1 ⋮ n + 1
Suy ra: (n + 3) – (n + 1) ⋮ (n + 1) hay 2 ⋮ (n + 1)
Do đó: n + 1 ∈ {1; 2}
+ Nếu n + 1 = 1 thì n = 0.
+ Nếu n + 1 = 2 thì n = 1.
Vậy có hai số thỏa mãn là 0 và 1
n+ 3\(⋮\) n- 1.
n- 1\(⋮\) n- 1.
=>( n+ 3)-( n- 1)\(⋮\) n- 1.
n+ 3- n+ 1\(⋮\) n- 1.
4\(⋮\) n- 1.
=> n- 1\(\in\) Ư( 4)={ 1; 2; 4}.
Trường hợp 1: n- 1= 1.
n= 1+ 1.
n= 2.
Trường hợp 2: n- 1= 2.
n= 2+ 1.
n= 3.
Trưởng hợp 3: n- 1= 4.
n= 4+ 1.
n= 5.
Vậy n\(\in\){ 2; 3; 5}.
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
Mà n là số tự nhiên
⇒ n ∈ {2}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
Mà n là số tự nhiên
⇒ n ∈ {2; 0; 3; 4; 7}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
Mà n là số tự nhiên
⇒ n ∈ {0; 2}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
\(Ư\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
2n+3 | 1 | 2 | 3 | 4 | 6 | 12 |
2n | -2(loại) | -1(loại) | 0 | 1(loại) | 3(loại) | 9(loại) |
n | 0 |
(Ta loại với giá trị 2n là số lẻ hoặc số âm)
Vậy \(n=0\)
Vì \(12⋮2n+3\) nên
\(2n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Lập bảng:
2n+3 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -1 | -1/2 | 0 | 1/2 | 3/2 | 9/2 |
Vậy \(n\in\left\{-1;-\dfrac{1}{2};0;\dfrac{1}{2};\dfrac{3}{2};\dfrac{9}{2}\right\}\)
n+2\(⋮\)n-1
\(\Leftrightarrow\)(n-1)+3\(⋮\)n-1
mà n-1\(⋮\)n-1\(\Rightarrow\)3\(⋮\)n-1\(\Rightarrow\)n-1\(\in\)Ư(3)=1;3
Xét n-1=1=>n=2
Xét n-1=3=>n=4
Vậy để n+2\(⋮\)n-1 thì n=2 hoặc 4
Chúc bạn học giỏi ^_^ !
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}
Với n + 3 = 1 => n không thuộc N (loại)
Với n + 3 = 2 => n không thuộc N (loại)
Với n + 3 = 4 => n = 1
Với n + 3 = 5 => n = 2
Với n+3 = 10 => n = 7
Với n + 3 = 20 => n = 17
\(n^2+3\)chia hết cho n - 1
\(\Rightarrow\)\(n^2-1+4\) chia hết cho n - 1
\(\Rightarrow\)\(n^2-1^2+4\) chia hết cho n - 1
(n - 1)(n + 1) + 4 chia hết cho n - 1 (1)
Mà (n - 1)(n + 1) chia hết cho n - 1 (2)
Từ (1) và (2) \(\Rightarrow\)4 chia hết cho n - 1\(\Rightarrow\)n - 1 \(\in\)Ư(4) = {1 ; 2 ; 4}
\(\Rightarrow\)n \(\in\){2 ; 3 ; 5}