K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)

Để M có giá trị nguyên

=> 3/x^2 - 2 thuộc Z

=> 3 chia hết cho x^2 - 2

=> x^2-2 thuộc Ư(3)={1;-1;3;-3}

nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)

x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)

x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)

x^2-2 = -3 => x^2 = -1 => không tìm được x

KL:...

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

15 tháng 7 2020

\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)

Để M nguyên => \(\frac{3}{x^2-2}\)nguyên

=> \(3⋮x^2-2\)

=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x2 - 21-13-3
x2315-1
x\(\pm\sqrt{3}\)\(\pm1\)\(\pm\sqrt{5}\)Vô nghiệm

Vì x thuộc Z => x = \(\pm1\)

15 tháng 7 2020

Bài làm:

\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)

Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)

Vậy x = 1 hoặc x = -1 thì M nguyên

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì:

$3x-1\vdots x-2$

$\Rightarrow 3(x-2)+5\vdots x-2$

$\Rightarrow 5\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì:

$3x-1\vdots x-2$

$\Rightarrow 3(x-2)+5\vdots x-2$

$\Rightarrow 5\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$

16 tháng 8 2021

undefined

a: Để B nguyên thì \(-7⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{-2;-4;4;-10\right\}\)

b: Để A là số nguyên thì \(3x+2⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{-2;-4;14;-8\right\}\)

Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)