K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Câu hỏi của hỏi đáp - Toán lớp 7 - Học toán với OnlineMath

a: gọi giao của tia phân giác góc A với HK là E

Xét ΔAHK có

AE vừa là đường cao, vừa là phân giác

=>ΔAHK cân tại A

b: ΔAHK cân tại A

=>góc BHI=góc AKH

=>góc BHI=góc BIH

=>ΔBIH cân tại B

Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???

11 tháng 5 2020

a, Gọi D vuông góc với phân giác của BAC tại điểm O

Xét △ADH và △ADK cùng vuông tại D

Có: HAD = KAD (gt)

=> △ADH = △ADK (cgv-gnk)

=> AH = AK (2 cạnh tương ứng)

=> △AHK cân tại A

b, Vẽ BI // CK (I  HK) 

=> AKH = BIH (2 góc đồng vị)

Mà AHK = AKH (△AHK cân tại A)

=> BIH = AHK 

=> BIH = BHI

=> △BHI cân tại B

=> BH = BI 

Xét △OBI và △OCK

Có: BOI = COK (2 góc đối đỉnh)

        OB = OC (gt)

       OBI = OCK (BI // CK)

=> △OBI = △OCK (g.c.g)

=> BI = CK (2 cạnh tương ứng)

Mà BH = BI (cmt)

=> BH = CK

c, Ta có: AH = AB + BH , AK = AC - KC

=> AH + AK = AB + BH + AC - KC

=> AH + AH = (AB + AC) + (BH - KC)    (AK = AH)

=> 2AH = AB + AC   (BH = KC => BH - KC = 0)

=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)

=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)

1 tháng 8 2016

a)Gọi giao của đường phân giác góc BAC và đường thẳng HK là E

Xét ΔAHK có AE vừa là đường cao vừa là đường phân giác

⇒ΔAHK cân tai A

B) vẽ đoạn thẳng BC′//HKđễ thấy AB=AC Mặt khác ΔAHK cân tại A nên AH=AK⇒BH=C′K lại có D là trung điểm BC và HK qua D, song song với BC′ nên DK là đường trung bình của ΔBCC′⇒K là trung điểm CC′⇒CK=C′K⇒BH=CK′

Phần c mk k pít lm nha

nhớ click đúng cho mk

16 tháng 3 2020

Tham khảo link này :  https://olm.vn//hoi-dap/detail/244303790856.html?auto=

21 tháng 1 2016

bạn nhấn vào  đúng 0 sẽ ra đáp án

21 tháng 1 2016

bạn nhấn vào  số 0 đúng sẽ ra 

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0