Tìm a biết 2/a là phân số tối giản và 2/a=2+4 trên b+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi ƯCLN (12n+1;30n+2) = d ( d thuộc N sao )
=> 12n+1 và 30n+2 đều chia hết cho d
=> 5.(12n+1) và 2.(30n+2) đều chia hết cho d
=> 60n+5 và 60n+4 đều chia hết cho d
=> 60n+5-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1 ( vì d thuộc N sao )
=> 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=> 12n+1/30n+2 là phân số tối giản
Tk mk nha
Theo đề bài ra ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\left(1\right)\)
Nêu tính chất hai phân số bằng nhau , từ ( 1 ) =>
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ab+4b\)
\(\Leftrightarrow10a=4b\)
Do đó : \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b ) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\left(gt\right)\) nêu theo tính chất hai phân số bằng nhau , ta có :
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow ab+b^2=4ab\)
\(\Leftrightarrow b^2=3ab\left(2\right)\)
Mà : \(b\ne0\)nên từ ( 2 )=> \(b=3a\)tức là : \(\frac{a}{b}=\frac{1}{3}\)
Vậy phân số tối giản \(\frac{a}{b}=\frac{1}{3}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).
Từ đó a = 5; b = 4 nên a - b = 1.
biết 1+1/2+1/4+1/8+...+(-1/2)^n-1+....=a/b. biêt a/b là phân số tối giản.... tìm a+b . giúp em với ạ
1+(-1/2)+1/4+(-1/8)+...+(-1/2)^N-1+....=a/b. tìm a+b. biết a/b là phân số tối giản