K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Thay giá trị x, y vào là tính được mà ??

20 tháng 1 2017

phải thu gọn đã nhé

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

19 tháng 3 2022

a, Thay x = 1/2 ; y = -1/3 ta được 

\(A=\dfrac{3.1}{8}\left(-\dfrac{1}{3}\right)+\dfrac{6.1}{4}.\left(\dfrac{1}{9}\right)+\dfrac{3.1}{2}\left(-\dfrac{1}{3}\right)^3\)

\(=-\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{3}{2\left(-27\right)}=-\dfrac{7}{72}\)

b, Thay x = -1 ; y = 3 ta được 

\(B=9+\left(-1\right).3-1+27=32\)

19 tháng 3 2022

bạn thay chỗ nào x là \(\dfrac{1}{2}\) còn chỗ nào y là \(\dfrac{-1}{3}\)nhé

còn như là 3\(x^3\)y thì thành là 3.\(x^3\).y nhé

mk lười nên ko giải ra cho bạn được leuleu

a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)

b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)

20 tháng 12 2023

\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)

Thay x+y=0 vào A

\(\Rightarrow\)A=0

28 tháng 3 2016

thay x=1/2 ; y=-1/3 vào thì được A=-11/24

28 tháng 3 2016

Thay x = \(\frac{1}{2}\) và y=\(\frac{-1}{3}\) vào biểu thức A ta có :                                                                                                   A=\(3\times\left(\frac{1}{2}\right)^3+6\times\left(\frac{1}{2}\right)^2\times\left(-\frac{1}{3}\right)^2+3\times\frac{1}{2}\times\left(-\frac{1}{3}\right)^3\)                                              A=\(\frac{3}{8}+\frac{1}{6}-\frac{1}{18}\)                                                                                                                                      A=\(\frac{35}{72}\)

Bài 1: 

a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)

\(=x^2-3x+6x-12\)

\(=x^2+3x-12\)

b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

c: \(\left(-2xy+3\right)\left(xy+1\right)\)

\(=-2x^2y^2-2xy+3xy+3\)

\(=-2x^2y^2+xy+3\)

d: \(x\left(xy-1\right)\left(xy+1\right)\)

\(=x\left(x^2y^2-1\right)\)

\(=x^3y^2-x\)

Bài 2: 

a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)

\(=27x^3+8\)

\(=27\cdot\dfrac{1}{27}+8=9\)

b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)

\(=125x^3-8y^3\)

\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)

=0

a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)

\(=-\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{-1}{18}\)

\(=\dfrac{-1}{72}\)

b: \(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)

\(=9-3-1+27=36-4=32\)