K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Làm khâu rút gọn thôi 

\(=\frac{15}{x+2}+\frac{42}{3x+6}\)

\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)

\(=\frac{3.15+42}{3\left(x+2\right)}\)

\(=\frac{87}{3\left(x+2\right)}\)

\(=\frac{29}{x+2}\)

20 tháng 1 2017

Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm 

3 tháng 7

a; A =  \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)

   A =     \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)

   A =      \(\dfrac{15}{x+2}\) +  \(\dfrac{14}{x+2}\) 

   A = \(\dfrac{29}{x+2}\) 

3 tháng 7

b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)

   A  \(\in\) Z ⇔ 29 ⋮ \(x\) + 2

   \(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}

 Lập bảng ta có: 

\(x\) + 2 - 29 - 1 1 29
\(x\) -31 -3 -1 27

Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}

Vậy \(x\) \(\in\) {-31; -3; -1; 27}

  

 

 

1 tháng 12 2018

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

2 tháng 12 2018

Thanks bạn ;)

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
20 tháng 10 2023

1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)

2:

a: \(P=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: \(2P=2\sqrt{x}+5\)

=>\(P=\sqrt{x}+\dfrac{5}{2}\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{5}{2}=\dfrac{2\sqrt{x}+5}{2}\)

=>\(\sqrt{x}\left(2\sqrt{x}+5\right)=2\sqrt{x}+2\)

=>\(2x+3\sqrt{x}-2=0\)

=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

=>\(2\sqrt{x}-1=0\)

=>x=1/4

20 tháng 10 2023

Bạn có thể làm hộ mình câu c được không?Nếu được thì mình cảm ơn bạn nhiều!

 

25 tháng 2 2020

\(A=\left(\frac{1-a^3}{a-a^2}+1\right)\cdot\left(\frac{1+a^3}{1+a}-a\right):\frac{\left(1-a^2\right)^3}{1+a}\)

\(=\left(\frac{\left(1-a\right)\cdot\left(1+a+a^2\right)}{a\cdot\left(1-a\right)}+1\right)\cdot\left(\frac{\left(1+a\right)\left(1-a+a^2\right)}{1+a}-a\right)\)\(:\frac{\left(1-a\right)^3\cdot\left(1+a\right)^3}{1+a}\)

\(=\left(\frac{1+a+a^2+a}{a}\right)\cdot\left(1-a+a^2-a\right):\left[\left(1-a\right)^3\cdot\left(1+a\right)^2\right]\)

\(=\frac{1+2a+a^2}{a}\cdot\left(1-2a+a^2\right):\left[\left(1-a\right)^3\cdot\left(1+a\right)^2\right]\)

\(=\frac{\left(1+a\right)^2}{a}\cdot\left(1-a\right)^2:\left[\left(1-a\right)^3\cdot\left(1+a\right)^2\right]\)

\(=\text{[}\frac{\left(1+a\right)^2}{a}:\left(1+a\right)^2\text{]}\cdot\text{[}\left(1-a\right)^2:\left(1-a\right)^3\text{]}\)

\(=\frac{1}{a}\cdot\frac{1}{1-a}=\frac{1}{a\left(1-a\right)}=\frac{1}{a-a^2}\)

Để \(A>A^2\Rightarrow\frac{1}{a-a^2}>\frac{1}{\left(a-a^2\right)^2}\)

Có ĐKXĐ : \(\left(a-a^2\right)\ne0\)

Mà \(\left(a-a^2\right)< \left(a-a^2\right)^2\)trừ trường hợp \(\left(a-a^2\right)=1\)

Từ tất cả điều trên suy ra : \(A\)thuộc tất cả các giá trị khác 1 để \(A>A^2\)

22 tháng 3 2016

tớ làm song bài này lâu rôi

22 tháng 3 2016

A =15/x+2 + 14/x+2 = 29/x+2

b) x+2 là U(29) = { -1;1;-29;29}

=> x ={ -3;-1;-31;27}