K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2.\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{198}{100}=\frac{99}{50}\)

Vậy ...

20 tháng 1 2017

cảm ơn bạn nhiều

22 tháng 5 2021

\(\Leftrightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)=\frac{1}{100}+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow x-\frac{98}{99}=\frac{1}{99}\Leftrightarrow x=1\)

21 tháng 5 2021

= -101/100

21 tháng 5 2021


\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\ =-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\ =-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\ =-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)

30 tháng 10 2016

\(S=\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{98\times99}+\frac{2}{99\times100}\)

\(S=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)

\(S=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(S=2\times\left(1-\frac{1}{100}\right)\)

\(S=2\times\frac{99}{100}\)

\(S=\frac{99}{50}\)

30 tháng 10 2016

\(S=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}+\frac{1}{100}\right)\)

\(S=2.\left(\frac{1}{1}-\frac{1}{100}\right)\\ S=2.\left(\frac{100}{100}+\frac{-1}{100}\right)\\ S=2.\frac{99}{100}\\ S=\frac{99}{50}\)

7 tháng 5 2018

do vế trái lớn hơn hoặc bằng 0

=> 100.x lớn hơn hoặc bằng 0

=> x lớn hơn hoặc bằng 0

=> vế trái 

=\(x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}\)

=>101x+\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)

=>x=\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

bạn tự tính vế phải nha

bạn làm rõ ra được ko ?

2 tháng 2 2020

Đặt tổng trên là A , ta có :

\(\frac{A}{2}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{A}{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{2}=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{98}\right)+\left(\frac{1}{99}-\frac{1}{99}\right)\)\(\frac{A}{2}=\frac{99}{100}\)

\(A=\frac{99}{100}.2\)

\(A=\frac{99}{50}\)

22 tháng 11 2014

Bạn có thể làm như vầy nè:

Đặt 2 ra ngoài,ta có dạng S = 2 x (1/2.3 + 1/3.4 + ... + 1 x 98 x 99 + 1/99.100)

Với chú ý:1/2.3 = 1/2 - 1/3

1/3.4 = 1/3 - 1/4,........

Vậy S = 2 x ( 1/2 - 1/100)  = 2 x (50/100 - 1/100) = 2.49/100 = 98/100 = 49/50

Chúc bạn học thiệt là giỏi!

15 tháng 3 2018

\(Tac\text{ó}:\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{98.99}-\frac{2}{99.100}\)

=\(2.\left(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\right)\)

=\(2\left(1-\frac{1}{2}\right)\)

14 tháng 3 2016

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

25 tháng 4 2017

MÌNH NGHĨ LÀ A< B

1 tháng 2 2017

Ta có : 1.98 + 2.97 + 3.96 + ...+ 98.1 = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + .....+ ( 1 + 2 + 3 + ...+ 97 + 98 ) = \(\frac{1.2}{2}\)\(\frac{2.3}{2}\)+  \(\frac{3.4}{2}\)+ ...+ \(\frac{98.99}{2}\)\(\frac{1}{2}\)( 1 . 2 + 2 . 3 + 3 . 4 +...+ 98 . 99).

Vậy A = \(\frac{1}{2}\)

1 tháng 2 2017

Nè bạn giải cụ thể chi tiết cho mình đk k thì mình mới k cho đk