Tìm ba số x,y,z không âm thỏa mãn x+3z=8,x+2y=9 và x+y+z lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Đặt \(\left(x;2y;3z\right)=\left(a;b;c\right)\Rightarrow a+b+c=2\)
\(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(S=\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}+\sqrt{\dfrac{bc}{bc+a\left(a+b+c\right)}}+\sqrt{\dfrac{ca}{ca+b\left(a+b+c\right)}}\)
\(S=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(S\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\Rightarrow x;y;z\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
\(\ge13\)
Dấu "=" xảy ra tại x=2;y=3;z=4
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-