tìm x,y thuộc z biết : x phần y = 4 phần 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x:2=y:\left(-5\right)\)
nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)
mà x-y=-7
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(-2;5)
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)
Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
mà x+y-z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Vậy: (x,y,z)=(16;24;30)
b)
Do đó ta có
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(-\frac{x}{9}=\frac{4}{9}\)
\(\Rightarrow-x=4\)
\(\Rightarrow x=-4\)
\(-\frac{x}{9}=\frac{4}{x}\) <=> x2 = -36 (VN)
Vậy ko có x thỏa đề bài
Ta có x/5=3/y
=> xy=5.3
xy=15
15=1.15=3.5
mà 0<x<y
=> x=1;y=15
x=3;y=5
từ \(\frac{x}{2}\)=\(\frac{y}{3}\)=>\(\frac{x}{8}\)=\(\frac{y}{12}\)
\(\frac{y}{4}\)=\(\frac{z}{5}\)=>\(\frac{y}{12}\)=\(\frac{z}{15}\)
=>\(\frac{x}{8}\)=\(\frac{y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(=>\hept{\begin{cases}x=2.8=16\\y=2.12=24\end{cases}z=2.15=30}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) (x+y-z=10)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\hept{\begin{cases}\frac{x}{8}=2\Rightarrow x=2.8=16\\\frac{y}{12}=2\Rightarrow y=2.12=24\\\frac{z}{15}=2\Rightarrow z=2.15=30\end{cases}}\)
Vậy x=16 ; y=24 và z=30