các bạn giúp mình với
tìm m sao đa đa thức sau về đa thức bậc nhất một ẩn
\(\frac{m^2-9}{x+2}.x-2m+1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(3x+2m\right):2=\dfrac{3}{2}x+m\) bậc 1 nên không thể là bình phương của đa thức bậc 1
Lời giải:
a)
$f(x)=x^3-2x=0$
$\Leftrightarrow x(x^2-2)=0$
\(\Rightarrow \left[\begin{matrix} x=0\\ x^2-2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\pm \sqrt{2}\end{matrix}\right. \)
Vậy tập nghiệm của đa thức $f(x)$ là $\left\{0;\pm \sqrt{2}\right\}$
b)
Gọi đa thức cần tìm có dạng $f(x)=9x^2+ax+b$
Nghiệm của đa thức là $\frac{2}{3}$ suy ra:
$f(\frac{2}{3})=4+\frac{2}{3}a+b=0(1)$
$f(-1)=25\Leftrightarrow 9-a+b=25(2)$
Từ $(1);(2)\Rightarrow a=-12; b=4$
Vậy đa thức cần tìm là $9x^2-12x+4$
a: x là đơn thức một biến
b: A(x)=-x^2+2/3x-1
Đặt A(x)=0
=>-x^2+2/3x-1=0
=>x^2-2/3x+1=0
=>x^2-2/3x+1/9+8/9=0
=>(x-1/3)^2+8/9=0(vô lý)
c: B(-3)=(-3)^2+4*(-3)-5
=9-5-12
=4-12=-8
mk ko bt làm đâu
mk chưa học cái đó
tk nha