K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

f(x) = 3x2 -15x + 12 

= 3 ( x2 - 5x + 4 )

= 3(x2 - 2.x.5/2 + (5/2)2 - (5/2)2 + 4 )

= 3[ (x-5/2)2 - 25/4 +4 ]

= 3(x - 5/2 )2 - 9/4

Vì ( x- 5/2)2 > hoặc bằng 0 với mọi x

=> 3(x - 5/2 ) > hoặc bằng 0 với mọi x

=> 3(x - 5/2 )2  - 9/4 > hoặc bằng  -9/4

=> GTNN của đa thức trên là -9/4 khi 3(x-5/2)= 0

(x-5/2)2 = 0

=> x - 5/2 = 0

=> x = 5/2

Vậy GTNN của đa thức trên là -9/4 khi x = 5/2

 

DD
7 tháng 7 2021

\(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2}=\frac{3}{4}\left(2x+1\right)+\frac{3}{4}\left(2x+1\right)+\frac{2}{\left(2x+1\right)^2}-\frac{3}{2}\)

\(\ge3\sqrt[3]{\left[\frac{3}{4}\left(2x+1\right)\right]^2.\frac{2}{\left(2x+1\right)^2}}-\frac{3}{2}=\frac{3}{2}\sqrt[3]{9}-\frac{3}{2}\)

Dấu \(=\)khi \(\frac{3}{4}\left(2x+1\right)=\frac{2}{\left(2x+1\right)^2}\Leftrightarrow\left(2x+1\right)^3=\frac{8}{3}\Leftrightarrow x=\frac{1}{\sqrt[3]{3}}-\frac{1}{2}\).

18 tháng 10 2021

Dễ thấy: \(f\left(x\right)=\left(x+m-1\right)^2-m^2+5m-6\ge-m^2+5m-6\)

Giá trị nhỏ nhất của f(x) đạt lớn nhất tức \(-m^2+5m-6\) đạt lớn nhất

Mà \(g\left(m\right)=-m^2+5m-6=-\left(m-\dfrac{5}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

g(m) đạt lớn nhất khi m=5/2

m cần tìm là 5/2

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Lời giải:

$A=\frac{x}{3}+5+\frac{12}{x}$

Áp dụng BĐT Cô-si cho các số dương:

$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$

$\Rightarrow A\geq 4+5=9$

Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$

13 tháng 12 2015

\(\frac{17}{2}\)

NV
1 tháng 11 2021

\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)

\(f\left(x\right)_{min}=2\sqrt{2}+1\)

1 tháng 11 2021

Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)

Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)

Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:

\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)

\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)

⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .

Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2

\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)