Tìm n thuộc Z để 2n-1 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)
Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Với \(2n+3=1\)thì \(n=-1\)
Với \(2n+3=-1\) thì \(n=-2\)
Với \(2n+3=5\)thì \(n=1\)
Với \(2n+3=-5\) thì \(n=-4\)
Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và \(n\in Z\)
Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)
Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Sau đó tìm n
2n-1 chia het cho n+1
=>2.(n+1)-3 chia het cho n+1
=>-3 chia het cho n+1
=>n+1 E Ư(-3)={-3;-1;1;3}
=> n E {-4;-2;0;2}
2n-1 chia hết n+1
=> 2(n+1)-2-1 chia hết n+1
=> 2(n+1)-3 chia hết n+1
=> 3 chia hết cho n+1
=> n+1 =Ư(3)={-1;1;-3;3}
=>n={-2;0;-4;2}
\(2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\)
\(\Rightarrow1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{2;0\right\}\)
Vậy............................
\(2n-1⋮n+1\Rightarrow2\left(n+1\right)-3⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}\)
Vậy ...................
Có:n+1\(⋮\)n+1
=>2n+2\(⋮\)n+1
Mà 2n-1 \(⋮\)n+1
=>(2n+2)-(2n-1)\(⋮\)n+1
=>2n+2-2n+1\(⋮\)n+1
=>3\(⋮\)n+1
=>n+1\(\in\)Ư(3)={-1;1;3;-3}
Nếu n+1=1=>n=0
Nếu n+1=-1=>n=-2
Nếu n+1=3=>n=2
Nếu n+1=-3=>n=-4