cho a+b=p.p là 1 số nguyên tố.chứng minh a và b nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đồng Minh Phương - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Ghi lại đề bài: Cho a+b=p với p là một số nguyên tố, a,b khác 0. Chứng minh a và b là hai số nguyên tố cùng nhau.
Bài làm:
Gọi ước chung lớn nhất của a và b là d, nghĩa là (a,b)=d
Khi đó tồn tại hai só nguyên m, n sao cho: \(a=d.m,b=d.n\)
Ta có: a+b=p
=> \(d.m+d.n=p\)
=> \(d\left(m+n\right)=p\)
=> p chia hết cho d mà p là số nguyên tố
=> d =1
=> (a,b)=1 => a,b là hai số nguyên tố cùng nhau.
Cho đoạn thẳng AB,M là trung điểm của nó.Lấy điểm C thuộc đoạn thẳng AB(C không trùng với các diểm A,B và M) sao cho AC<CB
a,Trong ba điểm A,M,C điểm nào nằm giữa 3 điểm còn lại?
b,Trên tia đối tia BA lấy điểm N.Chứng tỏ rằng:MN=AN+BN/2
Do p là số nguyên tố và p>3
=> p = 3k+1 hoặc 3k+2 (k là số tự nhiên)
Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 mà 2p+1 là số nguyên tố(L)
Nếu p=3k+2 thì 2p+1=2(3k+2)+1=6k+4+1=6k+5 không chia hết cho 3 (C)
=> 4p+1=4(3k+2)+1=12k+8+1=12k+9 cia hết cho 3 và lớn hơn 3
=> 4p+1 là hợp số (đpcm)
Do p là số nguyên tố và p>3
=> p = 3k+1 hoặc 3k+2 (k là số tự nhiên)
Nếu p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 mà 2p+1 là số nguyên tố(L)
Nếu p=3k+2 thì 2p+1=2(3k+2)+1=6k+4+1=6k+5 không chia hết cho 3 (C)
=> 4p+1=4(3k+2)+1=12k+8+1=12k+9 cia hết cho 3 và lớn hơn 3
=> 4p+1 là hợp số (ĐPCM)
p.p (p2) không thể nào là số nguyên tố đâu! Nó có 3 ước: 1;p;p2
Câu hỏi của Đồng Minh Phương - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!