K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2=x

 

1
10 tháng 10 2022

Ta có:

\(x^2=x\\ \Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Đs....

19 tháng 2 2021

dễ quá cơ là bằng 0

vì tất cả các số tự nhiên nhân 0 đều bằng 0 hết

0x0=0

8 tháng 11 2021

bằng 0 nha bn 

ơi

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.

f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)

=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0

=>6x-24=0

=>x=4

e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2

=>-5x^2-2x+16+4x^2-4x-8=4-x^2

=>-6x+8=4

=>-6x=-4

=>x=2/3

d: =>2x^2+3x^2-3=5x^2+5x

=>5x=-3

=>x=-3/5

b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20

=>-12x-2=-17x+20

=>5x=22

=>x=22/5

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`

b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-17x+20

=>-12x-2=-17x+20

=>5x=22

=>x=22/5

c: =>24x^2+16x-9x-6-4x^2-16x-7x-28=20x^2-4x+5x-1

=>-16x-34=x-1

=>-17x=33

=>x=-33/17

d: =>2x^2+3x^2-3=5x^2+5x

=>5x=-3

=>x=-3/5

e: =>8x+16-5x^2-10x+4x^2-4x-8=4-x^2

=>-6x+8=4

=>-6x=-4

=>x=2/3

f: =>4(x^2+4x-5)-x^2-7x-10=3x^2+3x-6

=>4x^2+16x-20-4x^2-10x+4=0

=>6x=16

=>x=8/3

7 tháng 8 2016

B = 2 + 2 x 2 + 2 x 2 x 2 + 2 x 2 x 2 x 2 + 2 x 2 x 2 x 2 x 2 + 2 x 2 x 2 x 2 x 2 x 2=2+22+23+24+25+26

=(2-1)(2+22+23+24+25+26)=27-1=128-1=127

=> chữ số tận cùng là 7

2 tháng 3 2022

127 nhé

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

1.

$(x-2)(x-5)=(x-3)(x-4)$

$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)

Vậy pt vô nghiệm.

2.

$(x-7)(x+7)+x^2-2=2(x^2+5)$

$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$

$\Leftrightarrow -51=10$ (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

3.

$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$

$\Leftrightarrow 4x+10=-8$

$\Leftrightarrow 4x=-18$

$\Leftrightarrow x=-4,5$

4.

$(x+1)^2=(x+3)(x-2)$

$\Leftrightarrow x^2+2x+1=x^2+x-6$

$\Leftrightarrow x=-7$ 

 

28 tháng 2 2017

2x11=22

28 tháng 2 2017

=2x1024

tk mình nha

a,\(2x-5=3x+15\)

\(3x-2x=-5-15\)

\(x=-20\)

b,\(\frac{2}{x-1}=\frac{6}{x+1}\)

\(2x+2=6x-6\)

\(4x=8\)

\(x=2\)

1 tháng 9 2021

a. (x - 2)(x + 2) - (x - 3)2 = 9

<=> x2 - 22 - (x - 3)2 = 32

<=> x - 2 - (x - 3) = 3

<=> x - 2 - x + 3 = 3

<=> x - x = 3 - 3 + 2

<=> 0 = 2 (Vô lí)

Vậy nghiệm của PT là S = \(\varnothing\)

b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)

\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)

\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)

\(\Leftrightarrow-x=2\)

hay x=-2