a) Chứng minh rằng : 21n+4 và 14 và n+3 nguyên tố cùng nhau
b) Chứng minh rằng nếu a và b là các số tự nhiên sao cho 5a+3b và 13a+8b cùng chia hết cho 2002 thì a và b cũng chia hết cho 2002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) 5a + 3b chia hết cho 2012 => 8(5a + 3b) chia hết cho 2012 => 40a + 24b chia hết cho 2012
13a + 8b chia hết cho 2012 => 3(13a + 8b) chia hết cho 2012 => 39a + 24b chia hết cho 2012
=> 40a + 24b - (39a + 24b) chia hết cho 2012 => a chia hết cho 2012
+) 5a + 3b chia hết cho 2012 => 13(5a + 3b) chia hết cho 2012 => 65a + 39b chia hết cho 2012
13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012 => 65a + 40b chia hết cho 2012
=> 65a + 40b - (65a + 39b) chia hết cho 2012 => b chia hết cho 2012
Vậy ...
b)
+) 5a + 3b chia hết cho 2012 => 8(5a + 3b) chia hết cho 2012 => 40a + 24b chia hết cho 2012
13a + 8b chia hết cho 2012 => 3(13a + 8b) chia hết cho 2012 => 39a + 24b chia hết cho 2012
=> 40a + 24b - (39a + 24b) chia hết cho 2012 => a chia hết cho 2012
+) 5a + 3b chia hết cho 2012 => 13(5a + 3b) chia hết cho 2012 => 65a + 39b chia hết cho 2012
13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012 => 65a + 40b chia hết cho 2012
=> 65a + 40b - (65a + 39b) chia hết cho 2012 => b chia hết cho 2012
Vậy ...
c) Bạn vào mục câu hỏi tương tự nhé
EM xin lỗi cô vì em đã **** cho cô quá nhiều trong ngày nên bây giờ em ko li-ke dc:)) Em cảm ơn cô ạ=)