K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)

\(\Rightarrow2xy+x+2y=xy+3x-3y\)

\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)

\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)

\(\Rightarrow xy-2x+3y=0\)

\(\Rightarrow xy-2x+3y-6=-6\)

\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)

\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)

Xét ước là xong,mấy câu kia tương tự

2 tháng 8 2017

bài này của bn giống mk DDT Miner Ter

18 tháng 1 2017

a. \(xy+x-y=9\)

\(\Leftrightarrow xy+x-y-1=9-1\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=8\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=8\)

Ta có bảng:

x - 1 1 -1 2 -2 4 -4 8 -8
y + 1 8 -8 4 -4 2 -2 1 -1
x 2 0 3 -1 5 -3 9 -7
y 7 -9 3 -5 1 -3 0 -2

Vậy các cặp (x;y) là (2;7) ; (0;-9) ; (3;3) ; (-1;-5) ; (5;1) ; (-3;-3) ; (9;0) ; (-7;-2)

18 tháng 1 2017

b) xy+2x-3y+5=0

\(\Leftrightarrow xy+2x-3y-6+6+5=0\)

\(\Leftrightarrow x\left(y+2\right)-3\left(y+2\right)+11=0\)

\(\Leftrightarrow\left(x-3\right)\left(y+2\right)=-11\)

Mà -11=-1*11=11*-1=-11*1=1*-11

Do đó ta lập bảng

x-3= y+2= x= y=
-1 11 2 9
11 -1 14 -3
-11 1 -8 -1
1 -11 4 -13

Vậy các cặp (x,y) là: (2,9);(14,-3);(-8,-1);(4,-13)

13 tháng 9 2021

a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2

Rút gọn:

 A = 2x3 - 2x2y + 2x + 3x2y - 3xy2+ 3y - 2x3 + x2y - 3x  (phá ngoặc)

=> A = 2x2y - 3xy- x + 3y

Thay x = -1 và y = 2; ta được:

A = 23

b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2

B = x3y/2 - 6xy2 + 5xy2 - 5x3y + 5y (phá ngoặc)

B = -9x3y/10 - xy2 + 5y

Thay x = 1 và y = 1/2 ta được:

B = 0

 

Bài này tuy có hơi cồng kềnh chút nhưng chỉ cần em chịu khó phá ngoặc là sẽ giải quyết được nhé!

1 tháng 11 2023

 Thực hiện phép tính (10x^5y^2-6x^2y^5+8x^2y^5):(-2x^2y^2)

13 tháng 9 2021

mọi người trả lời giúp mình với mình cần gấp

26 tháng 12 2022

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

26 tháng 12 2022

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}