Cho hai số hữu tỉ a/b và c/d (b>0; d>0) chứng minh rằng:
a. Nếu a/b <c/d thì a.b <b.c
b. Nếu a.d <b.c thì a/b <c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì b>0; d>0 nên b+d>0
Ta có: a/b<c/d =>ad<bc(*)
Thêm ab vào 2 vế (*) , ta có:
ab+ad<ba+bc
a(b+d)<b(a+c)
=>a/b<a+c/b+d(1)
Thêm cd vào 2 vế (*), ta được:
ad+cd<cb+cd
(a+c)d<c(b+d)
=>a+c/b+d<c/d(2)
Từ 1,2 =>a/b<a+c/b+d<c/d (b,d<0)
Nếu ad < bc => a d b d < b c b d = > a b < c d
Ngược lại nếu a b < c d = > a b . b d < c d . b d = > a d < b c