Cho A =\(3+3^2+3^3+....+3^{2009}\)
Tính số tự nhiên n biết rằng 2A + 3 = \(3^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>3A=32+33+…+32010
=>3A-A=32+33+…+32010-3-32-…-32009
=>2A=32010-3
=>2A+3=32010=3N
=>N=2010
A = 3+32+33+......+32009
3A = 32+33+34+......+32010
2A = 3A - A = 32010-3
=> 2A + 3 = 32010
Mà 2A + 3 = 3n
=> n = 2010
3A=3^2+3^3+3^4+...+3^2010
2A=3^2010-3
2A+3=3^2010-3+3=3^n
3^2010=3^n
n=2010
A=3+3^2+3^3+...+3^2009
=>3A=3^2+3^3+3^4+...+3^2010
=>3A-A=3^2010-3
=>2A=3^2010-3
=>2A+3=3^2010
=>n=2010
Ta có : 3A = 32 + 33 + 34 + 35 + .... + 32010
=> 3A - A = 32010 - 3
=> 2A = 32010 - 3
Ta có : 2A + 3 = 3n
=> 32010 - 3 + 3 = 3n
=> 32010 = 3n
=> n = 2010
vậy n = 2010
Bài làm
a) Ta có:
\(A=\)\(3+3^2+3^3+...+3^{2009}\)
\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)
\(2A=3^{2010}-3\)
Từ đó
=> \(2A+3=3^{2010}-3+3=3^{2010}\)
=> n = 2010
Ta có:
\(A=3+3^2+3^3+...+3^{2009}\)
\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)
\(2A=3^{2010}-3\)
\(A=\frac{3^{2010}-3}{2}\)
Ta có:
2A + 3 = 32010 - 3 + 3 = 32010
=> n = 2010
Vậy n = 2010
ỦNG HỘ NHA
3A=32+33+34+...+32010
3A-A=32010-3
2A=32010-3
=>2A+3=32010
Vậy n=2010
A = 3 + 32 + 33 + ... + 32009
3A = 32 + 33 + 34 + ... + 32010
3A - A = (32 + 33 + 34 + ... + 32010) - (3 + 32 + 33 + ... + 32009)
2A = 32010 - 3
=> 2A + 3 = (32010 - 3) + 3 = 32010 = 3n
=> n = 2010