K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DE=DB+BC+CE

nên DE=AB+AC+BC

10 tháng 2 2022

Vì tam giác ABC cân tại A

⇒ \(AB=AC\)

mà \(\left\{{}\begin{matrix}BD=AB\\AC=CE\end{matrix}\right.\)

\(\Rightarrow AB=AC=BD=CE\)

Ta có:

\(DE=BD+BC+CE\)

\(=AB+AC+BC\)(đpcm)

11 tháng 2 2022

Ta có:\(DE=BD+BC+CE=AB+BC+AC\)

11 tháng 2 2022

undefined

21 tháng 8 2021

Ta có: \(AB=AC.BD=CE\)  ⇒  \(AD=AE\)

⇒   △ ADE cân tại A  

⇒   \(\widehat{ADE}=\dfrac{180-A}{2}\)  \(\left(1\right)\)

Ta có:  △ ABC cân tại A 

⇒   \(\widehat{B}=\dfrac{180-A}{2}\)  \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:   \(\widehat{B}=\widehat{D}\)

Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC

 

Xét ΔABC có 

\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)

nên DE//BC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

a: DH vuông góc BC

EK vuông góc BC

=>DH//EK

b: góc BDH+góc B=90 độ

góc CEK+góc C=90 độ

góc B=góc C

=>góc BDH=góc CEK