Tính nhanh:
A = 1+ 1/2(1+2) + 1/3+(1+2+3) +1/4(1+2+3+4)+.....+1/16(1+2+3+....+16)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+1/2x3+1/3X6+1/4X10+...+1/16X136
A=1+3/2+2+5/2+3+...+17/2
A=2/2+3/2+4/2+5/2+6/2+...+17/2
A=2+3+4+5+...+16+17/2
A=(2+17)x16:2/2
A=19x16:2/2
A=304:2/2
A=152/2
A=76
****
ta có
A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)
xét tổng S = 1+2+3+4+5+......+n = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)
ta có
A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)
A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)
A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)
A = \(1+\frac{151}{2}\)
A = \(\frac{153}{2}\)
\(P=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+3+...+6\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{16}.\frac{16.17}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)
\(=\frac{2+3+4+...+17}{2}=\frac{\frac{27.18}{2}-1}{2}=76\)
chứng minh rằng B là số nguyên khi A là phân số