Giải và biện luận phưong trình
a . ( x - 1 ) = 2 . ( b - x )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>x(m^2-2m)-m+x+1<0
=>x(m^2-2m+1)<m-1
=>x(m-1)^2<m-1
TH1: m=1
BPT sẽ là 0x<0(vô lý)
TH2: m<>1
BPT sẽ có nghiệm là x<1/(m-1)
a: =>x(m-1)-2x>-m-2+4
=>x(m-3)>-m+2
TH1: m=3
BPT sẽ là 0x>-3+2=-1(luôn đúng)
TH2: m<3
BPT sẽ có nghiệm là x<(-m+2)/(m-3)
TH3: m>3
BPT sẽ có nghiệm là x>(-m+2)/(m-3)
a)ĐKXĐ: \(x\ne1\)
\(\dfrac{mx+1}{x-1}=1\Rightarrow mx+1=x-1\Leftrightarrow\left(m-1\right)x=-2\)
Nếu \(m=1\Rightarrow0x=-2\left(VN\right)\)
Nếu \(m\ne1\)
\(\left(1\right)\Rightarrow x=\dfrac{-2}{m-1}\)
Vậy nếu m=1 thì phương trình vô nghiệm
n khác 1 thì phương trình có nghiệm \(x=\dfrac{-2}{m-1}\)
b) ĐKXĐ: x khác -1
\(\dfrac{\left(m-2\right)x+3}{x+1}=2m-1\Rightarrow\left(m-2\right)x+3=\left(x+1\right)\left(2m-1\right)\\ \Leftrightarrow\left(m-2\right)x+3=\left(2m-1\right)x+2m-1\Leftrightarrow\left(2m-1\right)x-\left(m-2\right)x=3-\left(2m-1\right)\\ \Leftrightarrow\left(m+1\right)x=4-2m\)
Nếu m =-1 thì \(0x=6\left(VN\right)\)
Nếu m khác -1 thì phương trình có nghiệm duy nhất \(x=\dfrac{4-2m}{m+1}\)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
a. \(x^2-2\sqrt{5}x+5=0\)
<=> \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=0\)
<=> \(\left(x-\sqrt{5}\right)^2=0\)
<=> \(x-\sqrt{5}=0\)
<=> \(x=\sqrt{5}\)
b. \(\sqrt{x+3}=1\) ĐK: x \(\ge-3\)
<=> x + 3 = 12
<=> x = 1 - 3
<=> x = -2 (TM)
a: Ta có: \(x^2-2x\sqrt{5}+5=0\)
\(\Leftrightarrow x-\sqrt{5}=0\)
hay \(x=\sqrt{5}\)
b: Ta có: \(\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
hay x=-2
Bài 1: Giải và biện luận các phương trình sau theo tham số m a) 2mx + 3 = m - x b) m(x - 2) = 3x + 1
b: Để phương trình vô nghiệm thì x-2=0
hay x=2
Để phương trình có nghiệm thì x-2<>0
hay x<>2