K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

                   A=4+(22+23+24+...+220)

                  A-4=22+23+24+...+220

               2(A-4)=23+24+25+...+221

A-4=2(A-4)-(A-4)=(23+24+25+...+221)-(22+23+24+...+220)

                   A-4=(23-23)+(24-24)+(25-25)+...+(220-220)+(221-22)

                   A-4=221-4

                   A   =221-4+4

                   A   =221

Bạn làm tiếp nha . 

23 tháng 12 2016

Giải hết hộ mik đi mà xin bạn

14 tháng 8 2017

Ai giúp mình với

16 tháng 1 2018

toán lớp mấy đấy

23 tháng 12 2016

Câu 4
Đặt \(A=3+3^2+...+3^{20}\)

\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)

\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)

\(\Rightarrow A=3.4+3^3.4+...+3^{19}.4\)

\(\Rightarrow A=\left(3+3^3+...+3^{19}\right).4⋮4\)

\(\Rightarrow A⋮4\left(đpcm\right)\)

\(A=3+3^2+...+3^{20}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\)

\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+...+3^{17}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=3.40+...+3^{17}.40\)

\(\Rightarrow A=\left(3+...+3^{17}\right).40⋮40\)

\(\Rightarrow A⋮40\left(đpcm\right)\)

Câu 3:

Giải:
a) \(5⋮x-5\)

\(\Rightarrow x-5\in\left\{1;5\right\}\)

+) \(x-5=1\Rightarrow x=6\)

+) \(x-5=5\Rightarrow x=10\)

Vậy \(x\in\left\{6;10\right\}\)

b) Ta có: \(x+3⋮x-3\)

\(\Rightarrow\left(x-3\right)+6⋮x-3\)

\(\Rightarrow6⋮x-3\)

\(\Rightarrow x-3\in\left\{1;2;3;6\right\}\)

\(\Rightarrow x\in\left\{4;5;6;9\right\}\)

Vậy \(x\in\left\{4;5;6;9\right\}\)

 

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

AH
Akai Haruma
Giáo viên
21 tháng 11 2023

5.

$4x+3\vdots x-2$

$\Rightarrow 4(x-2)+11\vdots x-2$

$\Rightarrow 11\vdots x-2$

$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$

$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$

6.

$3x+9\vdots x+2$
$\Rightarrow 3(x+2)+3\vdots x+2$
$\Rightarrow 3\vdots x+2$

$\Rightarrow x+2\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow x\in \left\{-1; -3; 1; -5\right\}$

7.

$3x+16\vdots x+1$

$\Rightarrow 3(x+1)+13\vdots x+1$

$\Rightarrow 13\vdots x+1$

$\Rightarrow x+1\in \left\{1; -1; 13; -13\right\}$

$\Rightarrow x\in\left\{0; -2; 12; -14\right\}$

8.

$4x+69\vdots x+5$

$\Rightarrow 4(x+5)+49\vdots x+5$

$\Rightarrow 49\vdots x+5$

$\Rightarrow x+5\in\left\{1; -1; 7; -7; 49; -49\right\}$

$\Rightarrow x\in \left\{-4; -6; 2; -12; 44; -54\right\}$

AH
Akai Haruma
Giáo viên
21 tháng 11 2023

** Bổ sung điều kiện $x$ là số nguyên.

1. $x+9\vdots x+7$

$\Rightarrow (x+7)+2\vdots x+7$

$\Rightarrow 2\vdots x+7$

$\Rightarrow x+7\in \left\{1; -1; 2; -2\right\}$

$\Rightarrow x\in \left\{-6; -8; -5; -9\right\}$

2. Làm tương tự câu 1

$\Rightarrow 9\vdots x+1$

3. Làm tương tự câu 1

$\Rightarrow 17\vdots x+2$
4. Làm tương tự câu 1

$\Rightarrow 18\vdots x+2$

Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2nBài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết...
Đọc tiếp

Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n

Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7

Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27

Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12

8
28 tháng 2 2018

giúp tui với 

tui đang cần lắm đó bà con ơi

2 tháng 6 2021

em mới lớp 5 seo anh gọi em là: BÀ CON

3: \(\Leftrightarrow a-15=0\)

hay a=15

2:

a: Gọi d=ƯCLN(4n+7;2n+3)

=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

=>d=1

=>ƯCLN(4n+7;2n+3)=1

b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)

=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)

=>\(1⋮d\)

=>d=1

=>Đây là phân số tối giản