Tìm nghiệm của đa thức: 2x2 + 7x2 - 5x - 4 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2
Cho -7x - 2 = 0 ⇒ x = -2/7
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
`x^2 - 3x = 0`
`<=> x.(x-3)=0`
`<=> x = 0` hoặc `x-3=0`
`<=> x = 0 ` hoặc `x = 3`
Vậy `S = { 0;3}`
`2x^2 + 5x = 0`
`<=> x.(2x + 5)=0`
`<=> x = 0` hoặc `2x+5=0`
`<=> x = 0` hoặc `2x= -5`
`<=> x = 0` hoặc `x = -5/2`
Vậy `S = {0; -5/2}`
\(a,x^2-3x=0\\ x\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ b,2x^2+5x=0\\ x\left(2x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
a) \(^+\begin{matrix}P\left(x\right)=-x^3+2x^2-4\\Q\left(x\right)=x^3-x^2+5x+4\\\overline{P\left(x\right)+Q\left(x\right)=x^2+5x}\end{matrix}\)
\(\begin{matrix}P\left(x\right)=-x^3+2x^2-4\\^-Q\left(x\right)=x^3-x^2+5x+4\\\overline{P\left(x\right)-Q\left(x\right)=-2x^3+3x^2-5x-8}\end{matrix}\)
b) Cho \(P\left(x\right)+Q\left(x\right)=0\)
hay \(x^2+5x=0\)
\(x.x+5x=0\)
\(x.\left(x+5\right)=0\)
⇒ \(x=0\) hoặc \(x+5=0\)
⇒ \(x=0\) hoặc \(x\) \(=0-5=-5\)
Vậy \(x=0\) hoặc \(x=-5\) là nghiệm của đa thức \(P\left(x\right)+Q\left(x\right)\)
Ta có f(x)=0f(x)=0
⇔x2−5x+4=0⇔x2−5x+4=0
⇔x2−4x−x+4=0⇔x2−4x−x+4=0
⇔x(x−4)−(x−4)=0⇔x(x−4)−(x−4)=0
⇔(x−1)(x−4)=0⇔(x−1)(x−4)=0
⇔x=1⇔x=1 hoặc x=4x=4
Vậy: . . .
b) f(x) = 2x2x2 + 3x + 1
Ta có f(x)=0f(x)=0
⇔2x2+3x+1=0⇔2x2+3x+1=0
⇔2x2+2x+x+1=0⇔2x2+2x+x+1=0
⇔2x(x+1)+(x+1)=0⇔2x(x+1)+(x+1)=0
⇔(x+1)(2x+1)=0⇔(x+1)(2x+1)=0
⇔x=−1⇔x=−1 hoặc x=−12x=−12
Vậy: . . .
a, Để \(x\) là nghiệm của \(f\left(x\right)\)thì:
\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-x-\left(4x+4\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)
Vậy \(x=1,x=-4\)là hai nghiệm của \(f\left(x\right)\)
b, Để \(x\)là nghiệm của \(f\left(x\right)\)thì:
\(2x^2+3x+1=0\)
\(\Leftrightarrow2x^2+2x+x+1=0\)
\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0-1\\2x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}}\)
Vậy \(x=-1,x=\frac{-1}{2}\)là nghiệm của \(f\left(x\right)\)
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
2x2+7x2-5x-4=0 <=>9x2-5x-4=9x2-5x+\(\frac{25}{36}\)-\(\frac{25}{36}\)-4=(3x-5/6)2-\(\frac{169}{36}\)=0 <=>(3x-5/6)2=169/36 <=>3x-5/6=13/6<=>3x=13/6-5/6=18/6=3<=>x=3/3=1