K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Gọi \(E',F'\) lần lượt là điểm thuộc \(AB,AC\) sao cho \(BE'=BD,CF'=CD\).

Khi đó \(E'\) và \(D\) đối xứng qua \(IB\). Tương tự \(F'\) và \(D\) đối xứng qua \(IC\).

Suy ra \(E',F'\) lần lượt trùng với \(E,F\)

Đồng thời theo định lí Thales đảo: \(\frac{EB}{AB}=\frac{DB}{AB}=\frac{DC}{AC}=\frac{FC}{AC}\) nên \(EF\) song song \(BC\)

Hình:

A B C D E F I

3 tháng 9 2021

help me pls

 

 Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .    a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.    b) Gọi G là giao của BC và EF, đường...
Đọc tiếp

 Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .  
 a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.  
 b) Gọi G là giao của BC và EF, đường thẳng GJ cắt AB, AC lần lượt tại L và N. Lấy các điểm P, Q lần lượt trên các đường thẳng JB, JC sao cho \(\widehat{PAB}=\widehat{QAC}=90^o\). Các đường thẳng LP và NQ cắt nhau tại T. Gọi S là điểm chính giữa cung BAC của (O) và T là giao của AT với (O). Chứng minh rằng đường thẳng ST' đi qua tâm đường tròn nội tiếp tam giác ABC.

0
21 tháng 9 2015

Đề bạn đánh sai: sau khi vẽ hình tôi thấy đề đúng phải là: Đường tròn nội tiếp tâm O tiếp xúc với BC ở D, CA ở E và AB ở F.

Lời giải bài toán như sau:  Kí hiệu độ dài ba cạnh BC,CA,AB tương ứng là \(a,b,c.\) Khi đó ta có \(AE=AF=p-a,BD=BF=p-b,CD=CE=p-c\) với \(p=\frac{a+b+c}{2}\) là nửa chu vi tam giác \(\Delta ABC.\) 

Khi đó ta thấy \(FM=p-b\)\(