K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

MÌNH ĐANG CẦN GẤP!!! 

NV
24 tháng 4 2021

Với mọi số thực dương, ta chứng minh BĐT sau:

\(a+b\ge2\sqrt{ab}\)

Thật vậy, BĐT tương đương:

\(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Áp dụng vào bài toán:

\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}=4\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

12 tháng 6 2017

x+1/y = 1, ta có: 
+ x=1-1/y (1) 
+ (xy+1)/y=1 => xy+1=y (2) 
y+1/x >=4 
<=> (xy+1)/x >=4 
(1), (2) => y/ (y-1) /y >=4 
<=> y^2/ (y-1) >=4 
<=> y^2 >= 4y -4 
<=> y^2 -4y +4 >=0 
<=> (y-2)^2 >=0 (đúng)

12 tháng 6 2017

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 
Cộng lại ba bdt trên ta sẽ có được điều cần chứng minh 

28 tháng 4 2017

theo đề bài ta có (x+y)^2>=1

2(x^2+y^2)>=(x+y)^2>=1 

x^2+y^2>=1/2 

(x^2+y^2)^2>=1/4 

2(x^4+y^4)>=(x^2+y^2)^2>=1/4

x^4+y^4>=1/8(đề bạn ghi thiếu thì phải)

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

19 tháng 3 2017

PP : biến đổi tương đương

Bài làm

Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)

Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy

\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )

Vậy..........

20 tháng 3 2017

còn gọi là phương pháp phản chứng

26 tháng 12 2016

\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)

\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0

\(\left(2\right)2y\ge0\) với mọi y>0

\(\left(3\right)-3\ge-3\) với x,y

(1)+(2)+(3)=> dpcm

Hiểu thì  làm tiếp