cho x>0,y>0chứng minh (x+y)(1/x+1/y)>=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x+1/y = 1, ta có:
+ x=1-1/y (1)
+ (xy+1)/y=1 => xy+1=y (2)
y+1/x >=4
<=> (xy+1)/x >=4
(1), (2) => y/ (y-1) /y >=4
<=> y^2/ (y-1) >=4
<=> y^2 >= 4y -4
<=> y^2 -4y +4 >=0
<=> (y-2)^2 >=0 (đúng)
Bạn áp dụng bất đẳng thức sau để giải :
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*)
Áp dụng kết quả đó ta có
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)]
rồ tiếp tục áp dụng kết quả (*) ta lại có
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x)
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y)
Cái cuối cùng cũng tương tự như vậy
Cộng lại ba bdt trên ta sẽ có được điều cần chứng minh

theo đề bài ta có (x+y)^2>=1
2(x^2+y^2)>=(x+y)^2>=1
x^2+y^2>=1/2
(x^2+y^2)^2>=1/4
2(x^4+y^4)>=(x^2+y^2)^2>=1/4
x^4+y^4>=1/8(đề bạn ghi thiếu thì phải)

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$



PP : biến đổi tương đương
Bài làm
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)
Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy
\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )
Vậy..........

\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)
\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0
\(\left(2\right)2y\ge0\) với mọi y>0
\(\left(3\right)-3\ge-3\) với x,y
(1)+(2)+(3)=> dpcm
Hiểu thì làm tiếp
MÌNH ĐANG CẦN GẤP!!!
Với mọi số thực dương, ta chứng minh BĐT sau:
\(a+b\ge2\sqrt{ab}\)
Thật vậy, BĐT tương đương:
\(a-2\sqrt{ab}+b\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)
Áp dụng vào bài toán:
\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}=4\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)