Tìm x thuộc Z để:
A= x-3/x-5 đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
a) \(\left|x-3\right|\ge0\Leftrightarrow-2\left|x-3\right|\le0\Leftrightarrow9-2\left|x-3\right|\le9\)=> GTLN=9 <=> x=3
b) \(\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)
=> GTNN=6 <=> x=5
\(E=\frac{-x+5}{x-2}=\frac{-x}{x}+\frac{5}{x-2}=\frac{5}{x-2}-1\)
Để E đạt GTNN thì \(\frac{5}{x-2}\)cũng phải nhỏ nhất
=>x-2 là số nguyên âm lớn nhất
=>x-2=-1
x=1
Vậy Min C=-6 và x=1
\(\frac{5-x}{x-2}=\frac{5-x-2+2}{x-2}=\frac{5-2-x+2}{x-2}=\frac{\left(5-2\right)-\left(x-2\right)}{x-2}=\frac{5-2}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)
Để \(\frac{5-x}{x-2}\)lớn nhất thì \(\frac{3}{x-2}\)lớn nhất. do đó x-2 nhỏ nhất và \(x-2\ge0\) \(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy khi x=3 thì E đạt giá trị lớn nhất là \(\frac{5-3}{3-2}=\frac{2}{1}=2\)
Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)
Dấu = xảy ra <=> x=3
c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)
Dấu = xảy ra <=> \(2\le x\le3\)
^_^
b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)
\(\Rightarrow B\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
\(A=\dfrac{x-3}{x-5}\)
\(A=\dfrac{x-5}{x-5}+\dfrac{2}{x-5}\)
\(A=1+\dfrac{2}{x-5}\)
Để A đạt GTNN thì \(x-5\) đạt giá trị âm lớn nhất.
Do đó: \(x-5=-1\Rightarrow x=4\)
Vậy \(x=4\) thì A đạt GTNN.