K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

\(VT=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+3\right)\left(x+4\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+3}-\frac{1}{x+4}\)

\(=\frac{1}{x}-\frac{1}{x+4}=\frac{x+4-x}{x\left(x+4\right)}=\frac{4}{x\left(x+4\right)}\)

\(\Rightarrow\frac{4}{x\left(x+4\right)}=\frac{m}{x\left(x+4\right)}=VP\Rightarrow m=4\)

14 tháng 1 2017

Xem lại số hạng thứ 3 đúng chưa

2 tháng 12 2016

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

\(=\frac{1}{x}\)

2 tháng 12 2016

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

 

= \(\frac{1}{x}\)

17 tháng 12 2016

Tính nhanh: \(=\frac{1}{x}-\frac{1}{x+6}\)

24 tháng 11 2017

ta có

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)

27 tháng 12 2017

quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6

=1\x-1\x+6

=6\x(x+6)

27 tháng 12 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)

\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)

22 tháng 12 2018

A= \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{2}{x+3}-...+\frac{8}{x+5}-\frac{8}{x+6}\)

A=\(\frac{1}{x+1}+\frac{1}{x+3}+\frac{2}{x+4}+\frac{4}{x+5}-\frac{8}{x+6}\)

Rồi tiếp tục làm nhé bạn.

21 tháng 3 2019

1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)=1/3

<=>1/x-1/x+1+1/x+1-1/x+2+1/x+2-1/x+3+1/x+3-1/x+4=1/3

<=>1/x-1/x+4=1/3

<=>x+4/x(x+4)-x/x(x+4) ( quy dong mau ) =1/3

<=>4/x(x+4)=1/3

<=> 4.3=x(x+4) ( nhan cheo )

<=> x(x+4)=12

<=> x^2+4x-12=0

<=>x^2-2x+6x-12=0

<=>x(x-2) + 6(x-2) =0

<=> (x-2)(x+6)=0

<=> x-2 =0 hoac x +6=0

<=>x=2 hoac x= -6

Vay x thuoc ( 2,-6 )

K mk nha !!

21 tháng 3 2019

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x\text{+}2\right)}\text{+}\frac{1}{\left(x\text{+}2\right)\left(x\text{+}3\right)}+\frac{1}{\left(x\text{+}3\right)\left(x\text{+}4\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}-\frac{1}{x\text{+}1}\text{+}\frac{1}{x\text{+}1}-\frac{1}{x\text{+}2}\text{+}.....\text{+}\frac{1}{x\text{+}3}-\frac{1}{x\text{+}4}=\frac{1}{3}\)

\(\Rightarrow\)\(\frac{1}{x}-\frac{1}{x\text{+}4}=\frac{1}{3}\)

\(\Rightarrow\frac{x\text{+}4}{x\left(x\text{+}4\right)}-\frac{x}{x\left(x\text{+}4\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{4}{12}\)

\(\Rightarrow x\left(x\text{+}4\right)=12\)

mà x và x+4 cách nhau 4 đơn vị \(\Rightarrow x=2\)và x+4\(=\)6

Vậy \(x=2\)

30 tháng 3 2020

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

30 tháng 3 2020

Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)

Chúc bạn học tốt nhaok.

23 tháng 3 2020

AYUASGSHXHFSGDB HAGGAHAJF