Cho tam giác ABC. Trên AB lấy điểm M nằm trên AB sao cho AM=1/2 MB .Điểm N nằm trên AC sao cho AN =1/2 NC.Chứng tỏ rằng MNBC là hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{S_{AMN}}{S_{ANB}}=\frac{AM}{AB}=\frac{1}{2}$
Suy ra $S_{AMN}=\frac{1}{2}\times S_{ANB}$
$\frac{S_{ABN}}{S_{ABC}}=\frac{AN}{AC}=\frac{1}{3}$
$\Rightarrow S_{ABN}=\frac{1}{3}S_{ABC}$
Suy ra $S_{AMN}=\frac{1}{2}\times \frac{1}{3}\times S_{ABC}$
$\Rightarrow 6=\frac{1}{6}\times S_{ABC}$
$\Rightarrow S_{ABC}=36$ (cm2)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{MAN}=\widehat{BAC}\)
Do đó: ΔAMN đồng dạng với ΔABC
=>\(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
NC=NA+AC
MB=MA+AB
mà NA=MA và AC=AB
nên NC=MB
Hình thang MNBC có MB=NC
nên MNBC là hình thang cân