K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

Ta có  

25 - y^2 = 8(x-2009)^2

Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0  

Mặt khác do  8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn  

Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)  

Do vậy chỉ tồn tại các giá trị sau  

y^2 = 1, y^2 = 9, y^2 = 25  

y^2 = 1; (x-2009)^2 = 3 (loại)  

y^2 = 9; (x-2009)^2 = 2 (loại)  

y^2 = 25; (x-2009)^2 = 0; x = 2009  

Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

6 tháng 3 2018

Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

22 tháng 11 2021

Vì \(8\left(x-2009\right)^2\) chẵn nên \(25-y^2\) chẵn

Mà \(25\) lẻ nên \(y^2\) lẻ

Và \(25-y^2=8\left(x-2009\right)^2\ge0\Leftrightarrow y^2\le25\)

\(\Leftrightarrow y^2\in\left\{1;9;25\right\}\Leftrightarrow y\in\left\{1;3;5\right\}\left(y\in N\right)\)

\(\forall y=1\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\left(loại\right)\\ \forall y=3\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\left(loại\right)\\ \forall y=5\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\Leftrightarrow x=2009\left(nhận\right)\)

Vậy \(\left(x;y\right)=\left(2009;5\right)\)

4 tháng 1 2016

các bạn xóa máy câu trả lời đó đi 

7 tháng 1 2016

Nguyễn Ngọc Quý ơi giúp mình bài này với

25 tháng 2 2022

a, x ⋮ 25 và x < 100

Vì x ⋮ 25 

nên x ∈ B(25) = { 0;25;50;75;100;... }

Mà x < 100

=> x = { 0 ; 25 ; 50 ; 75 }

 b,5x + 3x = 3^6 : 3^3 .4 + 12

   x.( 5 +3 )= 3^3 . 4 + 12

    x . 8       = 27 . 4 + 12

    x . 8       = 108 + 12

    x . 8       = 120

    x            = 120 : 8

    x            = 15

                                                               ~HT~

\(25-y^2-8.\left(x-2009\right)^2\)

ta thấy vế phải \(8.\left(x-2009\right)^2\ge0\) \(\forall x\)

\(\Rightarrow VT:25-y^2\ge0\)

\(\Rightarrow0\le y^2\le25\)

\(\Rightarrow y^2\in\left\{0;1;4;9;16;25\right\}\)

mà \(8.\left(x-2009\right)^2\) chẵn\(\Rightarrow25-y^2\)chẵn \(\Rightarrow y^2lẻ\)

\(\Rightarrow y^2\in\left\{1;9;25\right\}\)

\(\Rightarrow y\in\left\{1;3;5\right\}\) (do \(y\in N\))

\(TH1:y=1\)

\(\Rightarrow8.\left(x-2009\right)^2=24\)

\(\Leftrightarrow\left(x-2009\right)^2=3\left(koTM\right)\)(do \(x\in N\))

\(TH2:y=3\)

\(\Rightarrow8.\left(x-2009\right)^2=16\)

\(\left(x-2009\right)^2=2\left(koTM\right)\)(do \(x\in N\))

\(TH3:y=25\)

\(\Rightarrow8.\left(x-2009\right)^2=0\)

\(\Rightarrow\left(x-2009\right)^2=0\Rightarrow x=2009\left(TM\right)\)

vậy cặp số \(\left(x,y\right)\) thỏa mãn \(25-y^2-8.\left(x-2009\right)^2\)  là  \(\left(2009;25\right)\)