K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

nếu  8260:9 dư 7 

neu 8260:3 du 1

1725:9 du 6

1725:3 du 0

2014 :9 du 7

 

10 tháng 10 2018

Bài 2:

\(3n+29⋮n+3\)

\(\Leftrightarrow3n+9+20⋮n+3\)

\(\Leftrightarrow3\left(n+3\right)+20⋮n+3\)

Vì \(3\left(n+3\right)⋮n+3\)nên \(20⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)

\(\Leftrightarrow n\in\left\{-2;-4;-1;-5;1;-7;2;-8;7;-13;17;-23\right\}\)

10 tháng 10 2018
  1. 10^15=10000...0(15 chữ số 0)

ta  thấy 8+2+6+0=16;1+7+2+5=15;7+3+6+4=20;1+0+0+0+..+0=1

=>8260/3 dư 1 ; 1725/3 dư 0 ; 7364/3 dư 2 ;10^15/3 dư 1

        2.3n+29 chia hết cho n+3

            n+3 chia hết cho n+3 =>3n+9  chia hết cho n+3

=>3x+29-3x-9=20  chia hết cho n+3

=>n+3 thuộc ước của 20

có bảng( tự làm)VD

n+32
n-1
5 tháng 10 2018

Vào câu hỏi tương tự đi

AH
Akai Haruma
Giáo viên
13 tháng 7

Lời giải:

$A=9^0+(9+9^2)+(9^3+9^4)+....+(9^{2013}+9^{2014})$

$=1+9(1+9)+9^3(1+9)+....+9^{2013}(1+9)$
$=1+(1+9)(9+9^3+....+9^{2013})$

$=1+10(9+9^3+....+9^{2013})$

$\Rightarrow A$ chia $10$ dư $1$.

18 tháng 10 2021

a) Ta có: a chia 9 dư 4 => đặt a =9k+4

           b chia 9 dư 5 => đặt b=9t+5

=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9

b) Ta có: c chia 9 dư 8 => đặt c=9n+8

=> b+c = 9t+5+9n+8 = 9(t+n+1) +4

=> b+c chia 9 dư 4

18 tháng 10 2021

Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9                                                b: dư4

22 tháng 8 2021

a) Ta có: a chia 9 dư 4 => đặt a =9k+4

           b chia 9 dư 5 => đặt b=9t+5

=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9

b) Ta có: c chia 9 dư 8 => đặt c=9n+8

=> b+c = 9t+5+9n+8 = 9(t+n+1) +4

=> b+c chia 9 dư 4