Cho tam giác ABC vuông tại A
M, N lần lượt là trung diểm của AB, AC
Chứng minh: MN//BC và MN =\(\frac{1}{2}\)BC
Ai giúp mình với ạ mình tick cho ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(AM = MB \Rightarrow M\) là trung điểm của \(AB\) (do \(M\) thuộc \(AB\))
\( \Rightarrow AM = \frac{1}{2}AB \Leftrightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\);
Vì \(AN = NC \Rightarrow N\) là trung điểm của \(AC\) (do \(N\) thuộc \(AC\))
\( \Rightarrow AN = \frac{1}{2}AC \Leftrightarrow \frac{{AN}}{{AC}} = \frac{1}{2}\).
b) Vì \(\frac{{AM}}{{AB}} = \frac{1}{2};\frac{{AN}}{{AC}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).
Xét tam giác \(ABC\) có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) nên áp dụng định lí Thales đảo ta được \(MN//BC\).
c) Xét tam giác \(ABC\) có \(MN//BC\) nên áp dụng hệ quả định lí Thales ta được \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)
Mà \(\frac{{AM}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\).
Vậy \(\frac{{MN}}{{BC}} = \frac{1}{2}\) (điều phải chứng minh).
Trong tam giác AMN, ta có:
MN = AN.sin(∠MAN) (định lí sin)
Vì MN là hình chiếu vuông góc của D lên AB và AC, nên AN = AD.cos(∠BAC) và AM = AD.cos(∠CAB). Thay vào công thức trên, ta có:
MN = AD.cos(∠CAB).sin(∠BAC)
Do đó, để chứng minh MN = AD.sin(BAC), ta cần chứng minh rằng:
cos(∠CAB).sin(∠BAC) = sin(∠BAC)
Áp dụng định lí sin, ta có:
cos(∠CAB).sin(∠BAC) = sin(∠BAC).cos(∠CAB)
Vì cos(∠CAB) = cos(90° - ∠BAC) = sin(∠BAC), nên:
sin(∠BAC).cos(∠CAB) = sin(∠BAC).sin(∠BAC) = sin^2(∠BAC)
Vậy, MN = AD.sin(BAC).
Như vậy, đã chứng minh hai điều kiện trên.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)
a)Xét\(\Delta ABC\)có:\(AN=NC\left(GT\right)\)
\(BM=MC\left(GT\right)\)
\(\Rightarrow MN\)là đg trung bình của\(\Delta ABC\)(Định nghĩa đg tr bình của tam giác)
\(\Rightarrow MN//AB\)(Định lí 2 đg tr bình của tam giác)
\(\Rightarrow AMNB\)là hình thang(Định nghĩa hình thang)(chỗ này bn muốn xét tứ giác thì xét nha tại mik lười)
b)Vì\(MN//AB\)(\(AMNB\)là hình thang) nên\(\widehat{CNM}=\widehat{CAB}\)(2 góc ĐV)
Vì thế nên nếu để MN\(\perp AC\)thì\(\widehat{CAB}\)phải=\(90^o\)
\(\Rightarrow\Delta ABC\)phải là tam giác vuông
Vậy\(\Delta ABC\)phải là tam giác vuông để MN\(\perp AC\)
c)Xét\(\Delta MAN\)và\(\Delta MCN\)có:MN là cạnh chung
\(\widehat{MNC}=\widehat{MNA}\)(\(=90^o\),MN\(\perp AC\))
AN=CN(GT)
Do đó:\(\Delta MAN=\text{}\text{}\Delta MCN\left(c-g-c\right)\)
Ta có:AM=MC(\(\Delta MAN=\text{}\text{}\Delta MCN\))
mà MC=\(\frac{BC}{2}\)(BC=BM+MC,BM=MC)
\(\Rightarrow AM=\frac{BC}{2}\Rightarrow2AM=BC\left(đpcm\right)\)(đpcm là điều phải chứng minh nha)
Xét tam giác ABC có:
M là trung điểm AB (gt)
N là trung điểm AB (gt)
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC
Lâu chưa giải hình ^^
Em tự vẽ nha hình cũng dễ. Chị lười quá.