K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
1 tháng 10 2022

`x^{2}+5x-13=76`

`<=>x^{2}+5x-89=0`

\(\Delta=5^2-4.1.\left(-89\right)=381>0\)

`=>` PT có `2` nghiệm phân biệt :

\(x_1=\dfrac{-5+\sqrt{381}}{2}\\ x_2=\dfrac{-5-\sqrt{381}}{2}\)

1 tháng 10 2022

\(x^2+5x-13=76\)

\(\Leftrightarrow x^2+5x-89=0\)

\(\Delta=5^2-4.1.\left(-89\right)=381>0\)

\(\Rightarrow Pt\) có hai nghiệm phân biệt:

\(x_1=\dfrac{-5+\sqrt{381}}{2};x_2=\dfrac{-5-\sqrt{381}}{2}\)

- Vậy tập nghiệm của phương trình \(S=\left\{\dfrac{-5+\sqrt{381}}{2};\dfrac{-5-\sqrt{381}}{2}\right\}\)

7 tháng 9 2018

7 tháng 3 2019

4 tháng 9 2018

22 tháng 2 2018

29 tháng 3 2019

Đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

NV
26 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)

24 tháng 4 2017

–  x 2  + 5x – 6 = 0 ⇔ -  x 2  + 2x + 3x – 6 = 0

⇔ - x(x – 2) + 3(x – 2) = 0 ⇔ (x – 2)(3 – x) = 0

⇔ x – 2 = 0 hoặc 3 – x = 0

      x – 2 = 0 ⇔ x = 2

      3 – x = 0 ⇔ x = 3

Vậy phương trình có nghiệm x = 2 hoặc x = 3.

16 tháng 9 2018

Điều kiện: Giải bài 4 trang 41 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z).

Giải bài 4 trang 41 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 4 trang 41 sgk Đại số 11 | Để học tốt Toán 11

26 tháng 3 2017

2 x 2  + 5x + 3 = 0 ⇔ 2 x 2  + 2x + 3x + 3 = 0

⇔ 2x(x + 1) + 3(x + 1) = 0 ⇔ (2x + 3)(x + 1) = 0

⇔ 2x + 3 = 0 hoặc x + 1 = 0

      2x + 3 = 0 ⇔ x = -1,5

      x + 1 = 0 ⇔ x = -1

Vậy phương trình có nghiệm x = -1,5 hoặc x = -1

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+...+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>\(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+...+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

=>1/x+2-1/x+6=1/8

=>\(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>x^2+8x+12=32

=>x^2+8x-20=0

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2